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Abstract

We present an energy-based approach to visual odometry
from RGB-D images of a Microsoft Kinect camera. To this
end we propose an energy function which aims at finding the
best rigid body motion to map one RGB-D image into an-
other one, assuming a static scene filmed by a moving cam-
era. We then propose a linearization of the energy function
which leads to a 6×6 normal equation for the twist coor-
dinates representing the rigid body motion. To allow for
larger motions, we solve this equation in a coarse-to-fine
scheme. Extensive quantitative analysis on recently pro-
posed benchmark datasets shows that the proposed solution
is faster than a state-of-the-art implementation of the itera-
tive closest point (ICP) algorithm by two orders of magni-
tude. While ICP is more robust to large camera motion, the
proposed method gives better results in the regime of small
displacements which are often the case in camera tracking
applications.

1. Introduction
Visual odometry, i.e., the problem of tracking the pose of

a robot purely from vision, has a long history in the fields of
computer vision and robotics [6, 4]. To estimate the motion
of a robot, often laser scanners have been used. The laser
scans are then often matched using variants of the iterative
closest point (ICP) algorithm [1, 7]. The general idea is
to iteratively assign correspondences between the points of
the two scans and to register them. In practice, this alterna-
tion is prone to local minima as the registration tends to re-
inforce a possibly suboptimal initial point correspondence.
This limitation is somewhat alleviated by extensions which
perform a point-to-plane assignments (rather than point-to-
point) [8]. In contrast, many state-of-the-art approaches us-
ing monocular camera images extract key-points and match
them with previous frames [3, 9, 2] using a sequence of pro-
cessing steps including descriptor matching, RANSAC and
bundle adjustment. While the reduction to sparse key-points
speeds up computation time enormously, much relevant in-
formation about the scene is lost. Newcombe et al. [5] re-

(a) First input image (b) Second input image

(c) Warped second image (d) Difference image

Figure 1: We propose an energy minimization approach to esti-
mate the camera motion between RGB-D images (a)+(b). The idea
is to compute the rigid body motion which optimally transforms
the second image (c) into the first, i.e. the difference image (d),
computed for locations of reliable depth, should be zero (=gray).

cently presented a novel approach to dense visual odome-
try and 3D surface reconstruction from monocular image
streams through extensive GPGPU parallelization. As we
will show in this paper, RGB-D sensors like the Microsoft
Kinect open novel ways to compute visual odometry di-
rectly from the input data which significantly reduces the
computational costs.

1.1. Contribution

We propose an energy minimization approach for visual
odometry from dense RGB-D images. The key idea is to
tackle the underlying inverse problem by minimizing the
backprojection error: Our goal is to find a rigid body trans-
formation g from the special Euclidean group SE(3) repre-
senting the camera motion such that the registered second
image exactly matches the first. We approximate the min-
imizer of this non-convex energy by sequential convex op-
timization: We linearize the energy and solve the arising
normal equation for the 3D twist coordinates representing
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the desired rigid body motion. Since the linearization only
holds for small twists, we apply a coarse-to-fine approach
to cope with larger camera motions.

We validated our approach on image sequences from a
recently proposed dataset [10] and compared the perfor-
mance of our approach to Generalized-ICP (GICP), a state-
of-the art implementation of ICP [8]. While we found that
ICP is more robust against larger camera displacements, our
evaluation shows that our approach provides better results
in the regime of small camera motions. Furthermore, our
approach is faster than ICP by two orders of magnitude.

2. Visual Odometry from RGB-D Data
Let

IRGB : Ω× R+ → [0, 1]3, (x, t) 7→ IRGB(x, t) (1)
h : Ω× R+ → R+, (x, t) 7→ h(x, t) (2)

denote the color image data and height field on the image
plane Ω ⊂ R2 obtained from an RGB-D sensor at time t ∈
R+, where IRGB gives the RGB values and h the depth in
meters. From this height field, we can compute a surface S,

S : Ω→ R3, x 7→ S(x) (3)

S(x) =
(

(x+ox)·h(x)
fx

,
(y+oy)·h(x)

fy
, h(x)

)>
where (ox, oy)> denotes the principal point of the camera
and fx and fy the focal lengths.

As the Kinect sensor has two independent cameras that
observe the scene from slightly different positions, we gen-
erate the height field h via reprojection of the disparity im-
age of the Kinect into a z-buffer so that IRGB(x) and h(x)
refer to the color and depth of the same point in the world.
Moreover, for simplicity, we only use the gray values of the
color image, i.e., we define I = (IR + IG + IG)/3.

Given two consecutive images I(t0) and I(t1) with sur-
faces S(t0) and S(t1), we now seek for the rigid body mo-
tion g ∈ SE(3) of the camera between t0 and t1. We assume
that the scene remains static, i.e., that every surface point
has the same color in all camera images it is visible in. Our
key idea is now that the rigid body motion g in combina-
tion with the surface S(t0) induces a unique mapping from
pixels in I(t1) to pixels in I(t0). In the remainder of this
paper, we call this mapping the warp w.

2.1. Lie Algebra Coordinates of Rigid Body Motion

We represent the six degrees of freedom of a rigid
body motion g in the Lie group SE(3) by the vector ξ =
(ω1 ω2 ω3 v1 v2 v3)> ∈ R6. It defines a twist

ξ̂ =


0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

 (4)

in the Lie algebra se(3) at time t ∈ R+. Assuming that ξ(t)
is constant in the temporal interval [t0, t1] the rigid body
motion , g(t1) is given by the matrix exponential

g(t1) = exp
(
(t1 − t0)ξ̂

)
g(t0), (5)

where g is a 4×4 homogeneous matrix of the form

g =

(
R T
0 1

)
, with R ∈ SO(3), T ∈ R3. (6)

The Lie group and the Lie algebra are related by the differ-
ential equation

dg
dt

(t) = ξ̂(t)g(t). (7)

Rigid body motions g of the camera give rise to respec-
tive transformations G of 3D points P ∈ R3:

G : SE(3)× R3 → R3, G(g, P ) = RP + T. (8)

The respectively transformed surface G(g, S) can be con-
verted to a height map using the projection π : R3 → Ω
from 3D space to the image plane given by:

π(G) =
(
G1fx
G3
− ox ,

G2fy
G3
− oy

)>
(9)

Concatenating (3), (5), (8), and (9), we obtain the image
warp

wξ : Ω× R+ → Ω, (x, t) 7→ wξ(x, t) (10)

wξ(x, t) = π
(
G
(

exp((t− t0)ξ̂)g(t0), S(x)
))

2.2. Maximizing Photoconsistency

In the ideal case that the rigid body motion g is known
between the two camera views, the warped second image
should exactly match the first image. In practice, of course,
the match will never be perfect because of missing values,
occlusions and noise.

Therefore, we propose to compute the rigid body motion
which maximizes photoconsistency. More specifically, we
compute the twist ξ which minimizes the least-squares error

E(ξ) =

∫
Ω

[I(wξ(x, t1), t1)− I(wξ(x, t0), t0)]2 dx (11)

Under the assumption g(t0) = id, the second term of (11)
reduces to

I(wξ(x, t0), t0) = I(x, t0). (12)

2.3. Linearization of the Energy

Unfortunately, the energy (11) is not convex in the pa-
rameter ξ and therefore finding the minimum is non-trivial.



To overcome this limitation, we approximate both the im-
age at time t1 and the corresponding warp w by first-order
Taylor approximations

I(wξ(x, t1), t1) ≈ I(x, t1) + (wξ(x, t1)− x) · ∇I(x, t1)
(13)

and

wξ(x, t1) ≈ x+ (t1 − t0) · d (π ◦G ◦ g)

dt︸ ︷︷ ︸
= dw

dt

∣∣∣∣∣
(x,t0)

(14)

By using the approximations (13) and (14), we get

El(ξ) =

∫
Ω

(
I(x, t1)− I(x, t0) + (15)

∇I(x, t1) · (t1 − t0) · dw
dt

(x, t0)

)2

dx

Without loss of generality, we set (t1−t0) = 1, since it is
only a scalar factor to the minimizing ξ of the linearized en-
ergy. Additionally we can assume that the temporal deriva-
tive of the image is constant between t0 and t1, so we can
substitute I(x, t1)− I(x, t0) = ∂I

∂t and obtain

El(ξ) =

∫
Ω

(
∂I

∂t
+∇I(x, t1) · dw

dt
(x, t0)

)2

dx (16)

By means of the chain rule, we can express the total
derivative dw

dt in (16) as the product of several total deriva-
tives (see (14)):

dw
dt

=
dπ
dG

∣∣∣∣
π(G(g(t0)),S(x)))

· dG
dg

∣∣∣∣
G(g(t0)),S(x))

· dg
dt

∣∣∣∣
t0

(17)
With this, the energy becomes

El(ξ) =

∫
Ω

(
∂I

∂t
+∇I · dπ

dG
· dG

dg
· dg

dt

)2

dx, (18)

where we neglected the evaluation points to improve read-
ability. As a next step, we plug (7) into (18) and obtain

El(ξ) =

∫
Ω

(
∂I

∂t
+∇I · dπ

dG
· dG

dg
· ξ̂ · g(t)

)2

dx, (19)

The result of ξ̂ · g(t) is a 4×4 matrix, and so the derivative
dG
dg is a 3×4×4 tensor. To simplify notation, we stack ξ̂ ·g(t)

as a vector in R12. It can easily be verified that there exists
a matrix Mg that fulfills

stack(ξ̂ · g(t)) = Mg · ξ. (20)

Dataset Ours GICP Improvement

freiburg1/desk 0.0053 m 0.0103 m 1.94x
0.0065 deg 0.0154 deg 2.37x

freiburg2/desk 0.0015 m 0.0062 m 4.13x
0.0027 deg 0.0060 deg 2.22x

Table 1: Comparison of the drift per frame of our approach ver-
sus GICP on two different datasets. The values give the median.
Our approach achieves more than 50% better pose estimates than
GICP.

Representing g by its stacked version, we get the final form
of our energy equation

El(ξ) =

∫
Ω

(
∂I

∂t
+

(
∇I · dπ

dG
· dG

dg
·Mg

)
︸ ︷︷ ︸

=:C(x,t0)

∣∣∣∣∣
(x,t0)

· ξ

)2

dx. (21)

For every pixel x there is a 1×6 constraintC(x, t0) in the en-
ergy. Finding the minimizing ξ for this energy yields solv-
ing 6× 6 normal equations. Since this is a least-squares
problem, it can be easily solved by solving its correspond-
ing normal equation. As the linearization in (15) is only
valid for small twists ξ, we apply a coarse-to-fine scheme:
We compute a first approximation on a coarse image scale,
and iteratively refine this estimate on finer scales.

3. Results
Figure 1 shows a qualitative assessment of our method:

The first and second image show the results of a quite large
camera pose transformation. As it can be seen on the right
side in the warped second image and the difference image
of this warped image to the first image, our method still suc-
ceeds in estimating this transformation, as the warped im-
age is nearly identical to the first image. The whole video
from which these images are taken is included in the supple-
mental material for this paper. We also included a video of
the whole camera tour, recorded in real-time from a third-
person camera perspective. The fact that the objects in this
video remain at their position shows that the accumulated
camera pose is highly accurate.

To evaluate our algorithm quantitatively, we use the pub-
licly available RGB-D dataset by Sturm et al. [10]. This
dataset contains RGB-D images from a Microsoft Kinect
with synchronized camera poses from an external motion
capture system. From the large variety of different se-
quences, we chose the freiburg1/desk and freiburg2/desk for
our experiments as they contain both translational and rota-
tional motions in a typical office environment at different
speeds.

We evaluated the drift per frame over these two se-
quences, see Tab. 1 and Fig. 2(top). Our approach has a me-
dian drift of 5.3 and 1.5 mm, while GICP drifts by 10.3 and
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Figure 2: Per-frame error (top) and error histogram (bottom) on
the freiburg2/desk sequence. We found that our approach has both
a lower median error and fewer outliers in comparison to GICP.
Note that the ground truth information is partially missing due to
occlusions in the scene.

6.2 mm per frame, respectively. We analyzed this result fur-
ther by computing the error histogram shown in Fig. 2(bot-
tom): This plot confirms that our approach has much lower
errors than GICP. Additionally, our approach also has fewer
outliers. We found that GICP has in 15.3% of all frames
an error larger than 1 cm, while our approach exceeds 1 cm
error only in one of the 2070 frames in the freiburg2/desk
sequence.

In our next experiment, we simulated larger camera ve-
locities by leaving out intermediate frames. In particular,
we matched I(t) and I(t + k) for different k = 1, . . . , 20
and measured for all t the error between our motion estimate
and the motion from the ground truth. Fig. 3 shows the me-
dian error with respect to k. In particular, we found that our
approach outperforms GICP when k is small, i.e., k < 5
for freiburg1/desk and k < 17 for freiburg2/desk. Note that
the average camera speed in freiburg1/desk is much higher
than in freiburg2/desk. From this result, we conclude that
our approach is well suited for continuous camera tracking,
while GICP can better deal with larger displacements.

We also evaluated the run-time of the two approaches.
On a single Intel Xeon E5520 CPU with 2.27GHz, we mea-
sured that our approach takes 0.08 s, while the standard
GICP implementation takes 7.52 s per match. This means
that our approach is able provide visual odometry in real-
time at 12.5 Hz.

4. Conclusion and Outlook
We introduced an energy-based approach to estimate the

rigid body motion of a handheld RGB-D camera for a static
scene. The key idea is to represent the rigid body motion in
terms of its Lie algebra of twists and to determine the twist
which maximizes the photoconsistency of the warped im-
ages. To this end, we minimize the non-convex reprojection
error by a sequence of convex optimization problems ob-
tained by linearizing the data term and solving the arising
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Figure 3: Pose accuracy under increasing frame differences, i.e.,
we match I(x, t) and I(x, t + k) for all t. For not too large in-
ter frame differences, the proposed method gives more accurate
results while GICP is more robust against larger displacements.

normal equations in a coarse-to-fine manner.
Our plans for future work includes the implementation

of a parallelized version of our approach on a GPU. Further,
we plan to extend our approach to simultaneous localization
and mapping.
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