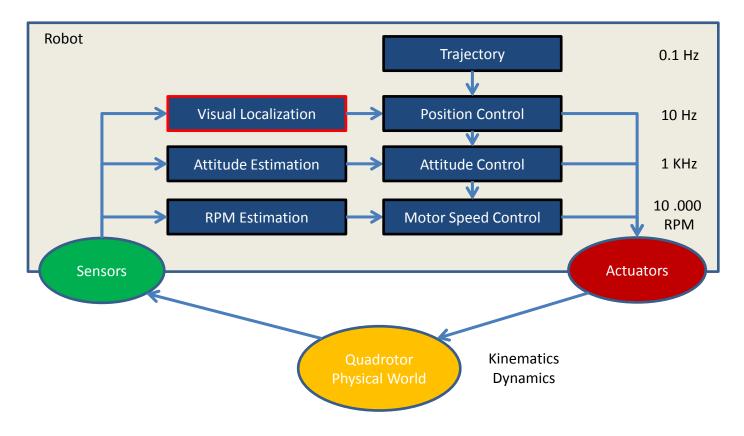


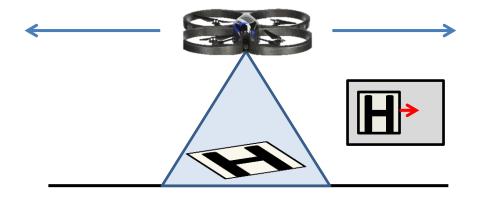
Computer Vision Group Prof. Daniel Cremers


Autonomous Navigation for Flying Robots

Lecture 7.2: Visual Odometry

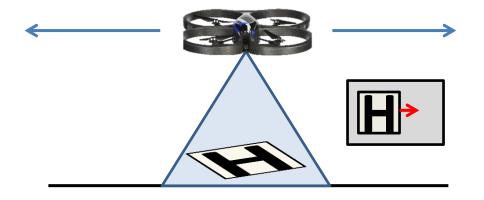
Jürgen Sturm Technische Universität München

Cascaded Control



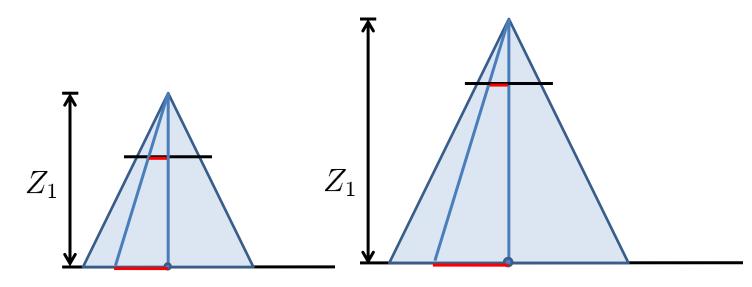
Visual Odometry

- Velocity estimates from IMU are very inaccurate
- (How) can we get more accurate velocity estimates?
- Real-time and minimal delay

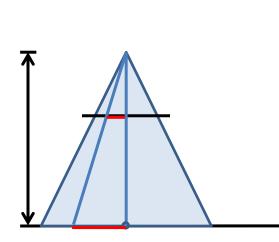


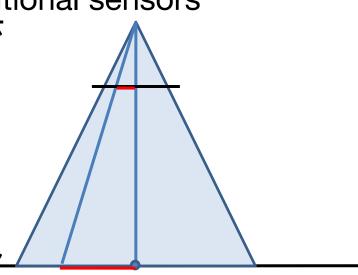
Visual Odometry

Idea:


- Track the motion of one or more points in the camera image
- Estimate 3D motion from this

Scale Ambiguity


 Purely from monocular vision, it is not possible to determine the absolute speed

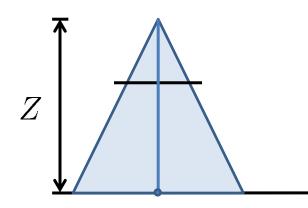


Scale Ambiguity

- Purely from monocular vision, it is not possible to determine the absolute speed
- Insight: We need additional sensors

Visual Odometry

Typical sensor combination for visual odometry on UAVs:


- IMU (provides absolute orientation)
- Height sensor (ultrasound)
- Downlooking camera

Furthermore, we assume a planar floor.

2D Translation

- Assume that we look perpendicular onto the planar ground
- Assume that we know the height Z (from ultrasound)
- Assume that we observe a 2D motion of $\mathbf{x} = \begin{pmatrix} u & v \end{pmatrix}^{\top}$
- What is the corresponding motion in 3D?

2D Translation

- Assume that we look perpendicular onto the planar ground
- Assume that we know the height Z (from ultrasound)
- Assume that we observe a 2D motion of $\mathbf{x} = \begin{pmatrix} u & v \end{pmatrix}^+$
- What is the corresponding motion in 3D?

Jürgen Sturm

Jürgen Sturm

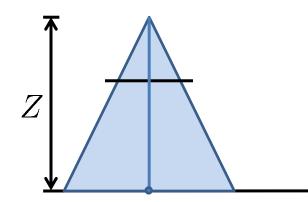
Autonomous Navigation for Flying Robots

10

2D Translation

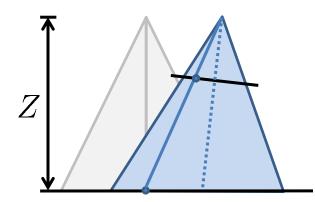
3D to 2D perspective projection

$$\widetilde{\mathbf{x}} = \mathbf{K}\mathbf{p}$$

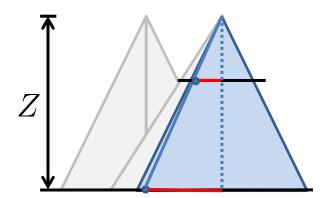

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \implies \lambda = Z$$

Now let's solve for p (in particular, X and Y):

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \mathbf{K}^{-1} Z \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

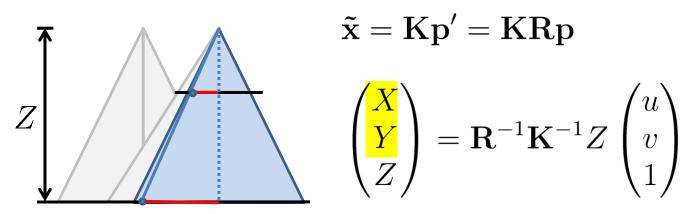


- What if the quadrotor tilts during flight?
- Assume that we have an IMU that gives us the (relative) rotation R



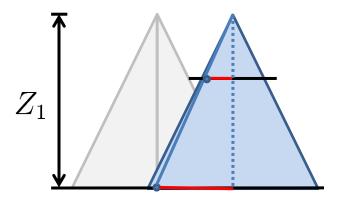
- What if the quadrotor tilts during flight?
- Assume that we have an IMU that gives us the (relative) rotation R

Let's de-rotate the camera image first



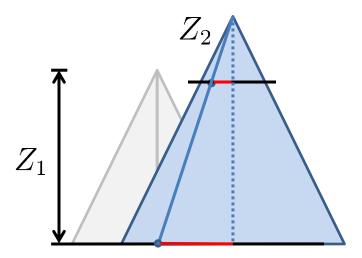
Jürgen Sturm

$$\mathbf{p}' = \mathbf{R}\mathbf{p}$$


 Now only pure translation remains, same procedure as before

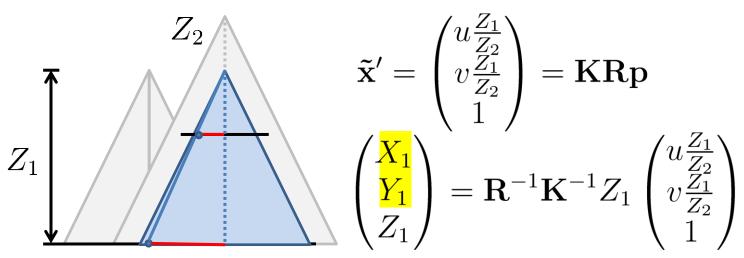
Height Change

What if the quadrotor changes its flying height?



Jürgen Sturm

Height Change


- What if the quadrotor changes its flying height?
- Point premains at the same location
- Pixel coordinate x gets scaled by $\frac{Z_1}{Z_2}$

Height Change

- What if the quadrotor changes its flying height?
- Point premains at the same location
- Pixel coordinate x gets scaled by $\frac{Z_1}{Z_2}$

Increasing Robustness

- So far, we tracked only a single point in the image
- Motion estimate is noisy and potentially an outlier
- Solution:
 - Track multiple points (e.g., 16)
 - Majority vote (RANSAC algorithm)

Two Examples

- Parrot Mainboard + Navigation board [Bristeau, IFAC WC 2011]
 Camera + IMU + ultrasound + pressure, 180 USD
- Pix4flow sensor from ETH [Honegger et al., ICRA 2013]
 Camera + IMU + ultrasound, 120 EUR

http://www.parrotshopping.com/us/p_parrot_product.aspx?i=230895

Jürgen Sturm

Pix4Flow Sensor

ТШ

[Honegger et al, ICRA 2013]

- Smart camera module
- 752Hx480V (60fps), 188Hx120V (250fps), 16mm lens
- ARM Cortex M4 (168 MHz, 192 KB RAM, single precision floating point operations)
- MEMS gyroscope (L3GD20)
- Ultrasound sensor
- Outputs speed over serial link
- Open-source

Demo Video [Honegger et al, ICRA 2013]

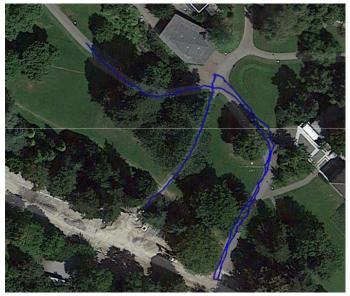
Dominik Honegger, Lorenz Meier, Petri Tanskanen and Marc Pollefeys. An Open Source and Open Hardware Embedded Metric Optical Flow CMOS Camera for Indoor and Outdoor Applications, ICRA2013.

Jürgen Sturm

Pix4flow on a Modified Ardrone [Honegger et al, ICRA 2013]

Dominik Honegger, Lorenz Meier, Petri Tanskanen and Marc Pollefeys. An Open Source and Open Hardware Embedded Metric Optical Flow CMOS Camera for Indoor and Outdoor Applications, ICRA2013.

Autonomous Navigation for Flying Robots


ПΠ

Evaluation

ПΠ

[Honegger et al, ICRA 2013]

- 1.6m altitude, manual flight
- Pure integration of position from velocities (no GPS)

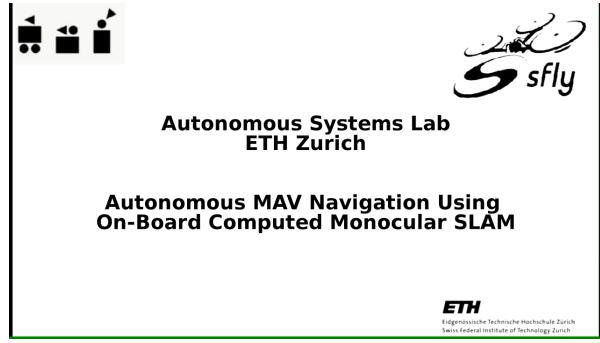
Honegger et al, ICRA 2013

Alternative Methods

- Stereo camera or depth sensor \rightarrow next week
- Wide-angle camera + IMU (no ultrasound)

Visual Odometry using PTAM [Weiss et al., ICRA 2012]

- Build sparse 3D map from visual features
- Based on PTAM library [Klein and Murray, ISMAR 2007]
- Drop old keyframes to keep computation time constant
- Use IMU to estimate scale



Stephan Weiss, Markus W. Achtelik, Simon Lynen, Margarita Chli and Roland Siegwart. Real-time Onboard Visual-Inertial State Estimation and Self-Calibration of MAVs in Unknown Environments. In IEEE International Conference on Robotics and Automation (ICRA), 2012. http://wiki.ros.org/ethzasl.ptam

Jürgen Sturm

Visual Odometry using PTAM [Weiss et al., ICRA 2012]

Stephan Weiss, Markus W. Achtelik, Simon Lynen, Margarita Chli and Roland Siegwart. Real-time Onboard Visual-Inertial State Estimation and Self-Calibration of MAVs in Unknown Environments. In IEEE International Conference on Robotics and Automation (ICRA), 2012. https://www.youtube.com/watch?v=wbEzp-L3NDo

Lessons Learned

- Visual odometry for UAVs
- Typical sensor setup and basic algorithm
- Alternative methods

 Next week: Cutting-edge research results from our group