

Computer Vision Group Prof. Daniel Cremers



### **Autonomous Navigation for Flying Robots**

# Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm

Technische Universität München

#### **3D to 2D Perspective Projections**





Richard Szeliski, Computer Vision: Algorithms and Applications http://szeliski.org/Book/

Jürgen Sturm

#### Autonomous Navigation for Flying Robots

#### **3D to 2D Perspective Projections**



Richard Szeliski, Computer Vision: Algorithms and Applications http://szeliski.org/Book/

Jürgen Sturm

#### Autonomous Navigation for Flying Robots





- We can think of an image as a function  $f : \mathbb{R}^2 \mapsto \mathbb{R}$
- $f(\mathbf{x})$  gives the intensity at position  $\mathbf{x}$
- Realistically, the image function is only defined on a rectangle and has finite range

$$f: [0, W-1] \times [0, H-1] \mapsto [0, 1]$$

# **Digital Images**



- Image function is sampled discrete pixel locations
- Image can be represented as a matrix

| 111 |
|-----|
| 147 |
| 207 |
| 193 |
| 77  |
| 68  |
| 83  |
| 77  |
|     |

### **Problem Statement**



- Given: two camera images  $f_0, f_1$
- Goal: estimate the camera motion u



- For the moment, let's assume that the camera only moves in the xy-plane, i.e.,  $\mathbf{u} = \begin{pmatrix} u & v \end{pmatrix}^{\top}$
- Extension to 3D follows

Jürgen Sturm

### **General Idea**

![](_page_6_Picture_1.jpeg)

- 1. Define an error metric  $E(\mathbf{u})$  that defines how well the two images match given a motion vector
- 2. Find the motion vector with the lowest error

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} E(\mathbf{u})$$

![](_page_6_Figure_5.jpeg)

![](_page_6_Picture_6.jpeg)

## **Error Metrics for Image Comparison**

Sum of Squared Differences (SSD)

$$E_{\text{SSD}}(\mathbf{u}) = \sum_{i} \left( f_1(\mathbf{x}_i + \mathbf{u}) - f_0(\mathbf{x}_i) \right)^2 = \sum_{i} e_i^2$$

with displacement  $\mathbf{u} = (u \ v)^{\top}$ and residual errors  $e_i = f_1(\mathbf{x}_i + \mathbf{u}) - f_0(\mathbf{x}_i)$ 

### Windowed SSD

![](_page_8_Picture_1.jpeg)

- Images (and image patches) have finite size
- Standard SSD has a bias towards smaller overlaps (less error terms)
- Solution: divide by the overlap area
- Root mean square error

$$E_{\rm RMS}(\mathbf{u}) = \sqrt{E_{\rm SSD}/A}$$

### **Cross Correlation**

![](_page_9_Picture_1.jpeg)

Maximize the product (instead of minimizing the differences)

$$E_{\rm CC}(\mathbf{u}) = -\sum_{i} f_0(\mathbf{x}_i) f_1(\mathbf{x}_i + \mathbf{u})$$

Normalized cross correlation (between -1..1)

$$E_{\text{NCC}}(\mathbf{u}) = -\sum_{i} \frac{(f_0(\mathbf{x}_i) - \text{mean}f_0)(f_1(\mathbf{x}_i + \mathbf{u}) - \text{mean}f_1)}{\sqrt{\text{var}f_0 \text{var}f_1}}$$
  
• Less sensitive to illumination changes

#### **General Idea**

![](_page_10_Picture_1.jpeg)

- 1. Define an error metric  $E(\mathbf{u})$  that defines how well the two images match given a motion vector
- 2. Find the motion vector with the lowest error

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} E(\mathbf{u})$$

![](_page_10_Figure_5.jpeg)

![](_page_10_Picture_6.jpeg)

# **Finding the minimum**

![](_page_11_Picture_1.jpeg)

- Full search (e.g., ±16 pixels)
- Gradient descent
- Hierarchical motion estimation

### **Motion Estimation**

![](_page_12_Picture_1.jpeg)

- Perform Gauss-Newton minimization on the SSD energy function (Lucas and Kanade, 1981)
- Gauss-Newton minimization
  - Linearize residuals w.r.t. to camera motion
  - Yields quadratic cost function
  - Build normal equations and solve linear system

![](_page_13_Picture_1.jpeg)

Error function

$$E_{\text{SSD}}(\mathbf{u}) = \sum_{i} \left( f_1(\mathbf{x}_i + \mathbf{u}) - f_0(\mathbf{x}_i) \right)^2 = \sum_{i} e_i^2$$

• Linearize in u

$$E_{\text{SSD}}(\mathbf{u} + \Delta \mathbf{u}) = \sum_{i} (f_1(\mathbf{x}_i + \mathbf{u} + \Delta \mathbf{u}) - f_0(\mathbf{x}_i))^2$$

### **Motion Estimation**

![](_page_14_Picture_1.jpeg)

Taylor expansion of energy function

$$E_{\text{SSD}}(\mathbf{u} + \Delta \mathbf{u}) = \sum_{i} (f_{1}(\mathbf{x}_{i} + \mathbf{u} + \Delta \mathbf{u}) - f_{0}(\mathbf{x}_{i}))^{2}$$
$$\approx \sum_{i} (f_{1}(\mathbf{x}_{i} + \mathbf{u}) + \mathbf{J}_{1}(\mathbf{x}_{i} + \mathbf{u})\Delta \mathbf{u} - f_{0}(\mathbf{x}_{i}))^{2}$$
$$= \sum_{i} (\mathbf{J}_{1}(\mathbf{x}_{i} + \mathbf{u})\Delta \mathbf{u} + e_{i})^{2}$$
with  $\mathbf{J}_{1}(\mathbf{x}_{i} + \mathbf{u}) = \nabla f_{1}(\mathbf{x})|_{\mathbf{x}=\mathbf{x}_{i}+\mathbf{u}} = \left(\frac{\partial f_{1}(\mathbf{x})}{\partial x}, \frac{\partial f_{1}(\mathbf{x})}{\partial y}\right)^{\top}$ 

Autonomous Navigation for Flying Robots

 $\mathbf{x} = \mathbf{x}_i + \mathbf{u}$ 

## **Least Squares Minimization**

![](_page_15_Picture_1.jpeg)

Goal: Minimize

$$E(\mathbf{u} + \Delta \mathbf{u}) \approx \sum_{i} (\mathbf{J}_{1}(\mathbf{x}_{i} + \mathbf{u})\Delta \mathbf{u} + e_{i})^{2}$$
• Solution: Compute derivative and set to zero
$$\frac{\partial E(\mathbf{u} + \Delta \mathbf{u})}{\partial E(\mathbf{u} + \Delta \mathbf{u})} \approx \mathbf{A} \mathbf{A} = \mathbf{U} \mathbf{A} \mathbf{A}^{\dagger} \mathbf{A}$$

$$\frac{\partial E(\mathbf{u} + \Delta \mathbf{u})}{\partial \Delta \mathbf{u}} = 2\mathbf{A}\Delta \mathbf{u} + 2\mathbf{b} \stackrel{!}{=} 0$$

with 
$$\mathbf{A} = \sum_i \mathbf{J}_1^\top (\mathbf{x}_i + \mathbf{u}) \mathbf{J}_1 (\mathbf{x} + \mathbf{u})$$

and 
$$\mathbf{b} = \sum_i e_i \mathbf{J}_1^\top (\mathbf{x}_i + \mathbf{u})$$

#### **Least Squares Minimization**

![](_page_16_Picture_1.jpeg)

**Step 1:** Compute A,b from image gradients using

$$\mathbf{A} = \begin{pmatrix} \sum f_x^2 & \sum f_x f_y \\ \sum f_x f_y & \sum f_y^2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} \sum f_x f_t \\ \sum f_y f_t \end{pmatrix}$$

with 
$$f_x = \frac{\partial f_1(\mathbf{x})}{\partial x}, f_y = \frac{\partial f_1(\mathbf{x})}{\partial y}$$

and 
$$f_t = \frac{\partial f_t(\mathbf{x})}{\partial t} [\approx f_1(\mathbf{x}) - f_0(\mathbf{x})]$$

Jürgen Sturm

## **Least Squares Minimization**

![](_page_17_Picture_1.jpeg)

Step 2: Solve linear system

$$A\Delta u = -b$$

$$\Rightarrow \qquad \Delta \mathbf{u} = -\mathbf{A}^{-1}\mathbf{b}$$

**Note:** All of the required computations are super-fast! In step 1: image gradients + summation to build A,b In step 2: solve a 2x2 linear equation

## **Hierarchical Motion Estimation**

Construct image pyramid by downsampling

$$f_k^{(l+1)}(\mathbf{x}_i) \leftarrow f_k^{(l)}(2\mathbf{x}_i)$$

- Estimate motion on coarse level
- Use as initialization for next finer level

 $\mathbf{\hat{u}}^{(l-1)} \leftarrow 2\mathbf{u}^{(l)}$ 

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

### **Covariance of the Estimated Motion**

Ш

Assuming (small) Gaussian noise in the images

$$f_{\rm obs}(\mathbf{x}_i) = f_{\rm true}(\mathbf{x}_i) + \epsilon_i$$

with 
$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

 ... results in uncertainty in the motion estimate with covariance (e.g., useful for Kalman filter)

$$\Sigma_u = \sigma^2 \mathbf{A}^{-1}$$

# Optical Computer Mouse (since 1999)

- E.g., ADNS3080 from Agilent Technologies, 2005
  - 6400 fps
  - 30x30 pixels
  - 4 USD

![](_page_20_Figure_5.jpeg)

![](_page_20_Picture_6.jpeg)

![](_page_20_Figure_7.jpeg)

http://www.alldatasheet.com/datasheet-pdf/pdf/203607/AVAGO/ADNS-3080.html

#### Jürgen Sturm

#### Autonomous Navigation for Flying Robots

## **Image Patches**

![](_page_21_Picture_1.jpeg)

- Sometimes we are interested of the motion of small image patches
- **Problem:** some patches are easier to track than others
- Which patches are easy/difficult to track?
- How can we recognize "good" patches?

## **Image Patches**

![](_page_22_Picture_1.jpeg)

- Sometimes we are interested of the motion of a small image patches
- Problem: some patches are easier to track than others

![](_page_22_Figure_4.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

Let's look at the shape of the energy

![](_page_23_Figure_3.jpeg)

#### Jürgen Sturm

#### Autonomous Navigation for Flying Robots

#### **Corner Detection**

![](_page_24_Picture_1.jpeg)

- Idea: Inspect eigenvalues  $\lambda_1, \lambda_2$  of matrix A (Hessian)
  - $\lambda_1, \lambda_2$  small  $\rightarrow$  no point of interest
  - $\lambda_1$  large,  $\lambda_2$  small  $\rightarrow$  edge
  - $\lambda_1, \lambda_2$  large  $\rightarrow$  corner

$$\mathbf{A} = \begin{pmatrix} \sum f_x^2 & \sum f_x f_y \\ \sum f_x f_y & \sum f_y^2 \end{pmatrix}$$

### **Corner Detection**

![](_page_25_Picture_1.jpeg)

 Harris detector (does not need eigenvalues)
 λ<sub>1</sub>λ<sub>2</sub> > κ (λ<sub>1</sub> + λ<sub>2</sub>)<sup>2</sup> ⇔ det(A) > κ trace<sup>2</sup>(A)

 Shi-Tomasi (or Kanade-Lucas)
 min(λ<sub>1</sub>, λ<sub>2</sub>) > κ

### **Other Detectors**

![](_page_26_Picture_1.jpeg)

- Förstner detector: localize corner with sub-pixel accuracy
- FAST corners: learn decision tree, minimize number of tests → super fast
- Difference of Gaussians (DoG): scale-invariant detector used for SIFT

## Kanade-Lucas-Tomasi (KLT) Tracker

- Algorithm
  - 1. Find (Shi-Tomasi) corners in first frame and initialize tracks
  - 2. Track from frame to frame
  - 3. Delete track if error exceeds threshold
  - 4. Initialize additional tracks when necessary
  - 5. Repeat step 2-4

### **KLT Tracker**

![](_page_28_Picture_1.jpeg)

- KLT tracker is highly efficient (real-time on CPU) but provides only sparse motion vectors
- Dense optical flow methods require GPU

#### **Demo of a KLT Tracker**

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

Visual Servoing Platform (ViSP), 2010. http://www.irisa.fr/lagadic/visp/visp.html https://www.youtube.com/watch?v=a0B2nBj4FAM

#### Autonomous Navigation for Flying Robots

### **Lessons Learned**

- 2D motion estimation
- Cost functions
- Optical computer mouse
- Corner detectors
- KLT Tracker

Next: Visual odometry

![](_page_30_Picture_7.jpeg)