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Images 

 We can think of an image as a function  

         gives the intensity at position 

 Realistically, the image function is only defined on a 
rectangle and has finite range 
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Digital Images 

 Image function is sampled discrete pixel locations 

 Image can be represented as a matrix 
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111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 



Problem Statement 

 Given: two camera images 

 Goal: estimate the camera motion 

 

 
 

 For the moment, let’s assume that the camera only moves 
in the xy-plane, i.e.,  

 Extension to 3D follows 
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General Idea 

1. Define an error metric            that defines how well the two 
images match given a motion vector 

2. Find the motion vector with the lowest error 

 

Jürgen Sturm Autonomous Navigation for Flying Robots 7 



Error Metrics for Image Comparison 

 Sum of Squared Differences (SSD) 
 
 
 
with displacement  
and residual errors  
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Windowed SSD 

 Images (and image patches) have finite size 

 Standard SSD has a bias towards smaller overlaps (less 
error terms) 

 Solution: divide by the overlap area 

 Root mean square error 
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Cross Correlation 

 Maximize the product (instead of minimizing the differences) 

 

 

 Normalized cross correlation (between -1..1) 

 

 

 

 Less sensitive to illumination changes 
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General Idea 

1. Define an error metric            that defines how well the two 
images match given a motion vector 

2. Find the motion vector with the lowest error 
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Finding the minimum 

 Full search (e.g., ±16 pixels) 

 Gradient descent 

 Hierarchical motion estimation 
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Motion Estimation 

 Perform Gauss-Newton minimization on the SSD energy 
function (Lucas and Kanade, 1981) 

 Gauss-Newton minimization 

 Linearize residuals w.r.t. to camera motion 

 Yields quadratic cost function  

 Build normal equations and solve linear system 
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Motion Estimation 

 Error function 

 

 

 

 Linearize in u 
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Motion Estimation 

 Taylor expansion of energy function 
 
 
 
 
 

 
 
with  
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Least Squares Minimization 

 Goal: Minimize 

 
 Solution: Compute derivative and set to zero 

 
 
 
with 
 

and  
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Least Squares Minimization 

Step 1: Compute A,b from image gradients using 
 

 
 

 
with 
 
 
and 
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Least Squares Minimization 

Step 2: Solve linear system 

 

 

 

 

Note: All of the required computations are super-fast! 

In step 1: image gradients + summation to build A,b 

In step 2: solve a 2x2 linear equation 
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Hierarchical Motion Estimation 

 Construct image pyramid by downsampling 

 

 

 

 

 Estimate motion on coarse level 

 Use as initialization for next finer level 
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Covariance of the Estimated Motion 

 Assuming (small) Gaussian noise in the images 
 
 
with 

 

 … results in uncertainty in the motion estimate with 
covariance (e.g., useful for Kalman filter) 
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Optical Computer Mouse (since 1999) 

 E.g., ADNS3080 from Agilent  
Technologies, 2005 

 6400 fps 

 30x30 pixels 

 4 USD 
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http://www.alldatasheet.com/datasheet-pdf/pdf/203607/AVAGO/ADNS-3080.html 



Image Patches 

 Sometimes we are interested of the motion of small image 
patches 

 Problem: some patches are easier to track than others 

 Which patches are easy/difficult to track? 

 How can we recognize “good” patches? 
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Image Patches 

 Sometimes we are interested of the motion of a small image 
patches 

 Problem: some patches are easier to track than others 
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Example 

 Let’s look at the shape of the energy 
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Corner Detection 

 Idea: Inspect eigenvalues            of matrix A (Hessian) 

             small  no point of interest 

       large,       small  edge 

             large  corner 
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Corner Detection 

 Harris detector (does not need eigenvalues) 

 

 Shi-Tomasi (or Kanade-Lucas) 
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Other Detectors 

 Förstner detector: 
localize corner with sub-pixel accuracy 

 FAST corners: 
learn decision tree, minimize number of tests  super fast 

 Difference of Gaussians (DoG):  
scale-invariant detector used for SIFT 

 … 
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Kanade-Lucas-Tomasi (KLT) Tracker 

 Algorithm 

1. Find (Shi-Tomasi) corners in first frame and initialize 
tracks 

2. Track from frame to frame 

3. Delete track if error exceeds threshold 

4. Initialize additional tracks when necessary 

5. Repeat step 2-4 
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KLT Tracker 

 KLT tracker is highly efficient (real-time on CPU) but 
provides only sparse motion vectors 

 Dense optical flow methods require GPU 
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Demo of a KLT Tracker 
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Visual Servoing Platform (ViSP), 2010. http://www.irisa.fr/lagadic/visp/visp.html 

https://www.youtube.com/watch?v=a0B2nBj4FAM 



Lessons Learned 

 2D motion estimation 

 Cost functions 

 Optical computer mouse 

 Corner detectors 

 KLT Tracker 

 

 Next: Visual odometry 
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