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3D to 2D Perspective Projections

//7\

Richard Szeliski, Computer Vision: Algorithms and Applications
http://szeliski.org/Book/
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3D to 2D Perspective Projections TUM
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Richard Szeliski, Computer Vision: Algorithms and Applications

Jurgen Sturm Autonomous Navigation for Flying Robots 3



Images TLTI

= We can think of an image as a function f : R* — R
= f(x) gives the intensity at position x

= Realistically, the image function is only defined on a
rectangle and has finite range

Fo0,W —1] % [0, H — 1]~ [0, 1]
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Digital Images

= Image function is sampled discrete pixel locations

= lImage can be represented as a matrix
J
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Problem Statement UM

= Given: two camera images /o, fi
= Goal: estimate the camera motion u
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= For the moment, let’s assume tQat the camera only moves
in the xy-plane, i.e., u= (u v)
= Extension to 3D follows
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General ldea M

1. Define an error metric E(u) that defines how well the two
iImages match given a motion vector

2. Find the motion vector with the lowest error
u* = arg min F(u)

| K
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Error Metrics for Image Comparison

= Sum of Squared Differences (SSD)

Essp(u) = > (fi(xi +u) — fo(x:))* =) e

with displacement u = (uv)'
and residual errors ¢; = fi1(x; +u) — fo(x;)
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Windowed SSD M

= Images (and image patches) have finite size

= Standard SSD has a bias towards smaller overlaps (less
error terms)

= Solution: divide by the overlap area
= Root mean square error

Erms(u) = v/ Essp/A

Jurgen Sturm Autonomous Navigation for Flying Robots 9



Cross Correlation I

= Maximize the product (instead of minimizing the differences)

Fce(u Z fo(x;) fi(x; +u)
= Normalized cross correlatlon (between -1..1)
Ence(u) =
B Z (fo(x;) — meanfy)(f1(x; + u) — meanf)

Vv var fovar fi

= Less sensmve to illumination changes
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General ldea M

1. Define an error metric E(u) that defines how well the two
iImages match given a motion vector

2. Find the motion vector with the lowest error
u* = arg min F(u)

| K
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Finding the minimum

* Full search (e.g., +16 pixels)
= (Gradient descent
= Hjerarchical motion estimation
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Motion Estimation M

= Perform Gauss-Newton minimization on the SSD energy
function (Lucas and Kanade, 1981)

= Gauss-Newton minimization
= |inearize residuals w.r.t. to camera motion
* Yields quadratic cost function
= Build normal equations and solve linear system
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Motion Estimation M

= Error function

Essp(u) = > (fi(xi +u) — fo(x:))* =) e

7 1
= |inearize in u

Essp(u+ Au) =) (fi(xi+u+Au) — fo(x;))’

(]
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Motion Estimation M

= Taylor expansion of energy function
Essp(u+ Au) =) (fi(x;+u+Au) — fo(x;))’

7

~ Z (fi(x; + 1) + J1(x; + u)Au — fo(x;))

—ZJl i Fu)Au +e;)?

-
with J;(x; + u) = Vfl(x)|x:xz+u _ (aféi}()’ afég(;()>

X=X;+u
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Least Squares Minimization
= Goal: Minimize
E(u+ Au) = Z(L(Xi +u)Au + ¢;)°

= Solution: Compute derivative and set to zero

OE(u+ Au)
O0Au

with A =>.J/ (x; +u)J;(x +u)

— 2AAu+2b = 0

and b=>.¢eJ|(x;+u)
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Least Squares Minimization

Step 1: Compute A,b from image gradients using

A ( > 2 mefy) . (2 fmft>

it 7, = 200 _ 000
O fi(x)

and f; =

By [ ~ fi(x) — fo(X)}
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Least Squares Minimization
Step 2: Solve linear system
AAu = —b
= Au=—-A"b

Note: All of the required computations are super-fast!
In step 1: image gradients + summation to build A,b
In step 2: solve a 2x2 linear equation
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Hierarchical Motion Estimation M

= Construct image pyramid by downsampling
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= Estimate motion on coarse level
= Use as initialization for next finer level

a1 « 2u®
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Covariance of the Estimated Motion

= Assuming (small) Gaussian noise in the images

fobs(Xi) — ftrue(xi) + €;
with €; ~ N(O, 0'2)

= ... results in uncertainty in the motion estimate with
covariance (e.g., useful for Kalman filter)

>, =02A1
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Optical Computer Mouse (since 1999)

= E.g., ADNS3080 from Agilent

Technologies, 2005
= 6400 fps
= 30x30 pixels

= 4 USD
q (=]
<4— HLMP-ED80-XX000 (LED)

<4—— ADNS-2220 (Clip)
ADNS-3080 (Sensor)

<4—— Customer supplied PCB

ADNS-2120 (Lens)

Customer supplied base
<« plate with recommended
alignment features per
IGES drawing.

http://www.alldatasheet.com/datasheet-pdf/pdf/203607/AVAGO/ADNS-3080.html
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Image Patches Tum

= Sometimes we are interested of the motion of small image
patches

= Problem: some patches are easier to track than others
= Which patches are easy/difficult to track?
= How can we recognize “good” patches?
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Image Patches Tum

= Sometimes we are interested of the motion of a small image
patches

* Problem: some patches are easier to track than others

<>

o
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Example

= Let’s look at the shape of the energ

Jurgen Sturm
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Richard Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
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Corner Detection LM

= |dea: Inspect eigenvalues A1, A2 of matrix A (Hessian)
= )\, A2 small = no point of interest
= )\jlarge, )\, small - edge
= A, Ay large - corner

A= (z%: i’ zé:fff)
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Corner Detection

= Harris detector (does not need eigenvalues)
MA2 > k(A + X2)? & det(A) > & trace®(A)
= Shi-Tomasi (or Kanade-Lucas)
min(Ag, Ay) > K

Jurgen Sturm Autonomous Navigation for Flying Robots

26



Other Detectors M

= Forstner detector:
localize corner with sub-pixel accuracy

= FAST corners:
learn decision tree, minimize number of tests - super fast

= Difference of Gaussians (DoG):
scale-invariant detector used for SIFT
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Kanade-Lucas-Tomasi (KLT) Tracker M

= Algorithm

1. Find (Shi-Tomasi) corners in first frame and initialize
tracks

Track from frame to frame
Delete track if error exceeds threshold

Initialize additional tracks when necessary
Repeat step 2-4

o &~ Db
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KLT Tracker

= KLT tracker is highly efficient (real-time on CPU) but
provides only sparse motion vectors

= Dense optical flow methods require GPU
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Demo of a KLT Tracker

Visual Servoing Platform (ViSP), 2010. http://www.irisa.fr/lagadic/visp/visp.html
https://www.youtube.com/watch?v=a0B2nBj4FAM
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Lessons Learned TUT]

= 2D motion estimation

= Cost functions

= Optical computer mouse
= Corner detectors

KLT Tracker

= Next: Visual odometry
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