

Computer Vision Group Prof. Daniel Cremers

Autonomous Navigation for Flying Robots

Lecture 3.1: 3D Geometry

Jürgen Sturm Technische Universität München Autonomous Navigation for Flying Robots

(x)

3D point
$$\mathbf{x} = \begin{pmatrix} y \\ z \end{pmatrix} \in \mathbb{R}^3$$
Augmented vector $\bar{\mathbf{x}} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \in \mathbb{R}^4$ Homogeneous coordinates $\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{pmatrix} \in \mathbb{P}^3$

Points in 3D

Geometric Primitives in 3D

- 3D line $\mathbf{r} = (1 \lambda)\mathbf{p} + \lambda \mathbf{q}$ through points \mathbf{p}, \mathbf{q}
- Infinite line: $\lambda \in \mathbb{R}$
- Line segment joining \mathbf{p}, \mathbf{q} : $0 \le \lambda \le 1$

Geometric Primitives in 3D

- 3D plane
- 3D plane equation

$$\tilde{\mathbf{m}} = (a, b, c, d)^{\top}$$

- $\bar{\mathbf{x}} \cdot \tilde{\mathbf{m}} = ax + by + cz + d = 0$
- Normalized plane $\mathbf{m} = (\hat{n}_x, \hat{n}_y, \hat{n}_z, d)^{\top} = (\hat{\mathbf{n}}, d)$ with unit normal vector $\|\hat{\mathbf{n}}\| = 1$ and distance d

Jürgen Sturm

3D Transformations

Translation

 Euclidean transform (translation + rotation), (also called the Special Euclidean group SE(3))

$$\tilde{\mathbf{x}}' = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^\top & \mathbf{1} \end{pmatrix} \tilde{\mathbf{x}}$$

Scaled rotation, affine transform, projective transform...

3D Euclidean Transformations

- Translation $\mathbf{t} \in \mathbb{R}^3$ has 3 degrees of freedom
- Rotation $\mathbf{R} \in \mathbb{R}^{3 \times 3}$ has 3 degrees of freedom

$$\mathbf{X} = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3D Rotations

A rotation matrix is a 3x3 orthogonal matrix

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

- Also called the special orientation group SO(3)
- Column vectors correspond to coordinate axes

3D Rotations

- What operations do we typically do with rotation matrices?
 - Invert, concatenate
 - Estimate/optimize
- How easy are these operations on matrices?

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

3D Rotations

Advantage:

Can be easily concatenated and inverted (how?)

Disadvantage:

Over-parameterized (9 parameters instead of 3)

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

Euler Angles

- Product of 3 consecutive rotations (e.g., around X-Y-Z axes)
- Roll-pitch-yaw convention is very common in aerial navigation (DIN 9300)

http://en.wikipedia.org/wiki/File:Rollpitchyawplain.png

Roll-Pitch-Yaw Convention

- Roll ϕ , Pitch θ , Yaw ψ
- Conversion to 3x3 rotation matrix:

$$\mathbf{R} = \mathbf{R}_{Z}(\psi)\mathbf{R}_{Y}(\theta)\mathbf{R}_{X}(\phi)$$

$$= \begin{pmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{pmatrix}$$

$$= \begin{pmatrix} \cos\psi\cos\theta & \cos\psi\sin\theta\sin\phi - \sin\psi\cos\phi & \cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi\\ \sin\psi\cos\theta & \sin\psi\sin\theta\sin\phi + \cos\psi\cos\phi & \sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi\\ -\sin\theta & \cos\theta\sin\phi & \cos\theta\cos\phi \end{pmatrix}$$

Roll-Pitch-Yaw Convention

- Roll ϕ , Pitch θ , Yaw ψ
- Conversion from 3x3 rotation matrix:

$$\phi = \operatorname{Atan2}\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$$
$$\psi = -\operatorname{Atan2}\left(\frac{r_{21}}{\cos(\phi)}, \frac{r_{11}}{\cos(\phi)}\right)$$
$$\theta = \operatorname{Atan2}\left(\frac{r_{32}}{\cos(\phi)}, \frac{r_{33}}{\cos(\phi)}\right)$$

Euler Angles

- Advantage:
 - Minimal representation (3 parameters)
 - Easy interpretation
- Disadvantages:
 - Many "alternative" Euler representations exist (XYZ, ZXZ, ZYX, ...)
 - Difficult to concatenate
 - Singularities (gimbal lock)

When the axes align, one degree-of-freedom (DOF) is lost:

http://commons.wikimedia.org/wiki/File:Rotating_gimbal-xyz.gif

Axis/Angle

- Represent rotation by
 - rotation axis n̂ and
 - rotation angle θ
- 4 parameters
- 3 parameters
 - Iength is rotation angle
 - also called the angular velocity
 - minimal but not unique (why?)

Rodriguez' formula

$$\mathbf{R}(\mathbf{\hat{n}},\theta) = \mathbf{I} + \sin\theta[\mathbf{\hat{n}}]_{\times} + (1 - \cos\theta)[\mathbf{\hat{n}}]_{\times}^{2}$$

Inverse

$$\theta = \cos^{-1} \left(\frac{\operatorname{trace}(\mathbf{R}) - 1}{2} \right), \, \hat{\mathbf{n}} = \frac{1}{2\sin\theta} \begin{pmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{pmatrix}$$

see: An Invitation to 3D Vision (Ma, Soatto, Kosecka, Sastry), Chapter 2

Jürgen Sturm

Axis/Angle

- Also called twist coordinates
- Advantages:
 - Minimal representation
 - Simple derivations
- Disadvantage:
 - Difficult to concatenate
 - Slow conversion

Quaternions

- Quaternion $\mathbf{q} = (q_w, q_x, q_y, q_z)^\top \in \mathbb{R}^4$
- Real and vector part

$$\mathbf{q} = (r, \mathbf{v}), r \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^3$$

- Unit quaternions have $\|\mathbf{q}\| = 1$
- Opposite sign quaternions represent the same rotation
- Otherwise unique

Richard Szeliski, Computer Vision: Algorithms and Applications http://szeliski.org/Book/

Quaternions

- Advantage: multiplication, inversion and rotations are very efficient
- Concatenation

 $(r_1, \mathbf{v}_1)(r_2, \mathbf{v}_2) = (r_1 r_2 - \mathbf{v}_1 \cdot \mathbf{v}_2, r_1 \mathbf{v}_2 + r_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2)$

Inverse (=flip signs of real or imaginary part)

 $(r, \mathbf{v})^{-1} = (r, \mathbf{v})^* \equiv (-r, \mathbf{v}) \equiv (r, -\mathbf{v})$

• Rotate 3D vector $\mathbf{p} \in \mathbb{R}^3$ using a quaternion:

 $(r, \mathbf{v})(0, \mathbf{p})(r, \mathbf{v})^{\star}$

Quaternions

• Rotate 3D vector $\mathbf{p} \in \mathbb{R}^3$ using a quaternion:

 $(r, \mathbf{v})(0, \mathbf{p})(r, \mathbf{v})^{\star}$

Relation to axis/angle representation

$$\mathbf{q} = (r, \mathbf{v}) = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{\hat{n}})$$

3D Orientations

- Note: In general, it is very hard to "read" 3D orientations/rotations, no matter in what representation
- Observation: They are usually easy to visualize and can then be intuitively interpreted
- Advice: Use 3D visualization tools for debugging (RVIZ, libqglviewer, ...)

3D to 2D Perspective Projections

Richard Szeliski, Computer Vision: Algorithms and Applications http://szeliski.org/Book/

Jürgen Sturm

3D to 2D Perspective Projections

Richard Szeliski, Computer Vision: Algorithms and Applications http://szeliski.org/Book/

Jürgen Sturm

3D to 2D Perspective Projections

$$\tilde{\mathbf{x}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \tilde{\mathbf{p}}$$

- Note: $\mathbf{\tilde{x}}$ is homogeneous, needs to be normalized

$$\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} \quad \Rightarrow \quad \mathbf{x} = \begin{pmatrix} \tilde{x}/\tilde{z} \\ \tilde{y}/\tilde{z} \end{pmatrix}$$

Camera Intrinsics

- So far, 2D point is given in meters on image plane
- But: we want 2D point be measured in pixels (as the sensor does)

Camera Intrinsics

Need to apply some scaling/offset

$$\tilde{\mathbf{x}} = \underbrace{\begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}}_{\text{intrinsics } K} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\text{projection}} \tilde{\mathbf{p}}$$

- Focal length f_x, f_y
- Camera center c_x, c_y
- Skew s

Camera Extrinsics

- Assume $\tilde{\mathbf{p}}_w$ is given in world coordinates
- Transform from world to camera (also called the camera extrinsics)

$$\tilde{\mathbf{p}} = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix} \tilde{\mathbf{p}}_w$$

Projection of 3D world points to 2D pixel coordinates:

$$\tilde{\mathbf{x}} = \begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} R & \mathbf{t} \end{pmatrix} \tilde{\mathbf{p}}_w$$

Lessons Learned

- 3D points, lines, planes
- 3D transformations
- Different representations for 3D orientations
 - Choice depends on application
 - Which representations do you remember?
- 3D to 2D perspective projections
- You really have to know 2D/3D transformations by heart (for more info, read Szeliski, Chapter 2, available online)