Computer Vision Group Vil
Prof. Daniel Cremers LA

Technische Universitat Munchen

Autonomous Navigation for Flying Robots

Lecture 3.1:
3D Geometry

Jurgen Sturm
Technische Universitat MUnchen

Points in 3D

h
= 3D point x=|y| eR’
<
a
= Augmented vector X = ‘7; c R*
\1/

(7
= Homogeneous coordinates x = S| ep?

)

Jurgen Sturm Autonomous Navigation for Flying Robots

Geometric Primitives in 3D

= 3D line r = (1 — A\)p + Aq through points p,q
= Infinite line: A € R
* Line segment joining p,q: 0< A <1

Jurgen Sturm Autonomous Navigation for Flying Robots

Geometric Primitives in 3D TUT]

= 3D plane m = (a,b,¢,d)’
= 3D plane equation X m=ar+by+cz+d=0
= Normalized plane m = (7, Ay, Ao, d) | = (1, d)

with unit normal vector ||ii|| = 1 and distance d

Jurgen Sturm Autonomous Navigation for Flying Robots 4

3D Transformations M

= Translation -, I t)\ _
X = OT 1 X
| —

4x4

* Euclidean transform (translation + rotation), (also called the
Special Euclidean group SE(3))

L, (R t).
X—0T1X

= Scaled rotation, affine transform, projective transform...

Jurgen Sturm Autonomous Navigation for Flying Robots

3D Euclidean Transformations

= Translation t € R* has 3 degrees of freedom
= Rotation R € R**® has 3 degrees of freedom

/T11 rio riz 1)
X_(R t)_ o1 Tog To3 o

sy T32 T33

t
\00013)

Jurgen Sturm Autonomous Navigation for Flying Robots

3D Rotations

= A rotation matrix is a 3x3 orthogonal matrix

11 Ti2 T13
R = |79 792 793

rs1 T32 733
= Also called the special orientation group SO(3)
= Column vectors correspond to coordinate axes

Jurgen Sturm Autonomous Navigation for Flying Robots

3D Rotations M

= What operations do we typically do with rotation matrices?
= |[nvert, concatenate
= Estimate/optimize

= How easy are these operations on matrices?

11 Ti2 T13
R = |79 792 793

31 T32 7133

Jurgen Sturm Autonomous Navigation for Flying Robots 8

3D Rotations

= Advantage:
Can be easily concatenated and inverted (how?)

= Disadvantage:
Over-parameterized (9 parameters instead of 3)

11 Ti2 T13
R = |79 792 793

31 T32 7133

Jurgen Sturm Autonomous Navigation for Flying Robots

Euler Angles m

* Product of 3 consecutive rotations (e.g., around X-Y-Z axes)

= Roll-pitch-yaw convention is very common in aerial
navigation (DIN 9300)

http://en.wikipedia.org/wiki/File:Rollpitchyawplain.png

Jurgen Sturm Autonomous Navigation for Flying Robots 10

Roll-Pitch-Yaw Convention M

= Roll ¢, Pitch 6, Yaw
= Conversion to 3x3 rotation matrix:

R =Rz(V)Ry(0)Rx(¢)

cos?y —siny O cosf 0 sind 1 0 0
= | sin®yY cosyp O 0 1 0 0 cos¢p —sing
0 0 1 —sinf@ 0 cosf 0 sin¢g cos¢

costpcosf cossinfsing —siny cos¢ cost sin b cos ¢ + sin) sin ¢

(sinwcosé’ sin sin @ sin ¢ + cos cos ¢ sin 1 sinf cos ¢ — cos 1 sin @)

—sin 6 cos 0 sin ¢ cos cos ¢

Jurgen Sturm Autonomous Navigation for Flying Robots 11

Roll-Pitch-Yaw Convention

= Roll ¢, Pitch 6, Yaw
= Conversion from 3x3 rotation matrix:

(b = AtanQ (—Tgl, ’l"%l + 7"%1>

21 11
v A (cos(gb)’ COS(¢)>

. r'32 733
o= a2 (2 8)

Jurgen Sturm Autonomous Navigation for Flying Robots

12

Euler Angles m

= Advantage:
= Minimal representation (3 parameters)
= Easy interpretation

= Disadvantages:

= Many “alternative” Euler representations exist (XYZ, ZXZ,
ZYX, ...)

= Difficult to concatenate
= Singularities (gimbal lock)

Jurgen Sturm Autonomous Navigation for Flying Robots

13

Gimbal Lock LM

= When the axes align, one degree-of-freedom (DOF) is lost:

http://commons.wikimedia.org/wiki/File:Rotating_gimbal-xyz.gif

Jurgen Sturm Autonomous Navigation for Flying Robots 14

Axis/Angle TLTI

= Represent rotation by
= rotation axis n and
= rotation angle ¢
= 4 parameters
= 3 parameters
= length is rotation angle
= also called the angular velocity
= minimal but not unique (why?)

Jurgen Sturm Autonomous Navigation for Flying Robots 15

Conversion TLM

= Rodriguez’ formula
R(1,0) = I +sinf[i], + (1 —cosd)[A]?

= |nverse

trace(R) — 1 1 32 — T23
Q:COS_I(r (2)),ﬁ: 13 — T's1

91 — T'12

see: An Invitation to 3D Vision (Ma, Soatto, Kosecka, Sastry), Chapter 2

Jurgen Sturm Autonomous Navigation for Flying Robots 16

Axis/Angle TLTI

= Also called twist coordinates
= Advantages:

= Minimal representation

= Simple derivations
= Disadvantage:

= Difficult to concatenate

= Slow conversion

Jurgen Sturm Autonomous Navigation for Flying Robots 17

Quaternions

= Quaternion q = (qu, ¢z, ¢y, q-) € R
* Real and vector part
q=(r,v), 7R, veR’

Unit quaternions have ||q|| =1

= Opposite sign quaternions
represent the same rotation

Otherwise unique

Richard Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/

Jurgen Sturm Autonomous Navigation for Flying Robots 18

Quaternions LM

= Advantage:
multiplication, inversion and rotations are very efficient

= Concatenation
(r1,v1)(re, Vo) = (rire — V1 - Vo, 71Vy + 1T9V] + V| X V)
= Inverse (=flip signs of real or imaginary part)
(r,v) ' =(r,v) = (—r,v) = (r,—V)
= Rotate 3D vector p € R’ using a quaternion:
(r,v)(0,p)(r,v)"

Jurgen Sturm Autonomous Navigation for Flying Robots 19

Quaternions

= Rotate 3D vector p € R’ using a quaternion:

(r,v)(0, p)(r, V)"
= Relation to axis/angle representation
0 0

q=(r,v) = (cos 5> sin 51?1)

Jurgen Sturm Autonomous Navigation for Flying Robots

20

3D Orientations TUT]

= Note: In general, it is very hard to “read” 3D
orientations/rotations, no matter in what representation

= Observation: They are usually easy to visualize and can
then be intuitively interpreted

= Advice: Use 3D visualization tools for debugging (RVIZ,
libgglviewer, ...)

Jurgen Sturm Autonomous Navigation for Flying Robots 21

3D to 2D Perspective Projections

//7\

Richard Szeliski, Computer Vision: Algorithms and Applications
http://szeliski.org/Book/

Jurgen Sturm Autonomous Navigation for Flying Robots

22

3D to 2D Perspective Projections TUM

p € R’

x € R?

Richard Szeliski, Computer Vision: Algorithms and A pplications
http://szeliski.org/Book/

Jurgen Sturm Autonomous Navigation for Flying Robots 23

3D to 2D Perspective Projections
= Pin-hole camera model

= Note: x is homogeneous, needs to be normalized

)+ =

Jurgen Sturm Autonomous Navigation for Flying Robots

o O =
O = O
= O O
o OO

e

1
.
@ X

24

Camera Intrinsics M

= So far, 2D point is given in meters on image plane
= But: we want 2D point be measured in pixels (as the sensor

w-1
A
/W X, Ve
0 T
4
0 T
1 (C“\acj) A f >
A z
4 Xe ¢
P -
H_ l //
P
Vylg E:f,;?;gzgﬁ:iifgi’;;gwer Vision: Algorithms and Applications
Jurgen Sturm Autonomous Navigation for Flying Robots 25

Camera Intrinsics

= Need to apply some scaling/offset

x=|0 f, ¢|l0 100
0 0 1 0 0 1 0
intrir:srics K proj?egtion

= Focal length f., f,
= Camera center c,, ¢,
= Skew s

Jurgen Sturm Autonomous Navigation for Flying Robots

ol

26

Camera Extrinsics M

= Assume p, Is given in world coordinates
= Transform from world to camera (also called the camera

extrinsics)
- R t\ .
P = (OT 1) Pw

= Projection of 3D world points to 2D pixel coordinates:

Jo S5 C
x=|(0 f, ¢ | (R t)DPu
0O 0 1

Jurgen Sturm Autonomous Navigation for Flying Robots 27

Lessons Learned M

3D points, lines, planes
3D transformations
= Different representations for 3D orientations
= Choice depends on application
= Which representations do you remember?
= 3D to 2D perspective projections

= You really have to know 2D/3D transformations by heart
(for more info, read Szeliski, Chapter 2, available online)

Jurgen Sturm Autonomous Navigation for Flying Robots 28

