
Real-time Human Motion Tracking using Multiple Depth Cameras

Licong Zhang1, Jürgen Sturm2, Daniel Cremers2, Dongheui Lee1

Abstract— In this paper, we consider the problem of tracking
human motion with a 22-DOF kinematic model from depth
images. In contrast to existing approaches, our system naturally
scales to multiple sensors. The motivation behind our approach,
termed Multiple Depth Camera Approach (MDCA), is that
by using several cameras, we can significantly improve the
tracking quality and reduce ambiguities as for example caused
by occlusions. By fusing the depth images of all available
cameras into one joint point cloud, we can seamlessly incor-
porate the available information from multiple sensors into
the pose estimation. To track the high-dimensional human
pose, we employ state-of-the-art annealed particle filtering and
partition sampling. We compute the particle likelihood based
on the truncated signed distance of each observed point to
a parameterized human shape model. We apply a coarse-to-
fine scheme to recognize a wide range of poses to initialize
the tracker. In our experiments, we demonstrate that our
approach can accurately track human motion in real-time
(15Hz) on a GPGPU. In direct comparison to two existing
trackers (OpenNI, Microsoft Kinect SDK), we found that our
approach is significantly more robust for unconstrained motions
and under (partial) occlusions.

I. INTRODUCTION

Motion capture and analysis is a strongly researched field
with many applications in areas such as computer animation,
video games, medical therapy, tele-presence, surveillance and
human machine interaction [1], [2], [3]. Various approaches
have been proposed to push the performance gradually
towards accurate, stable and real-time motion capturing with
simple setup procedures. However, most commercially avail-
able real-time motion tracking systems are marker-based,
which require the actors to wear obtrusive devices. As a
result, such systems are relatively complex, expensive and
difficult to maintain. Therefore, marker-less, camera-based
tracking systems are in high demand, but are often chal-
lenged by problems such as occlusion, ambiguity, lighting
conditions and dynamic objects. Depth sensors such as time-
of-flight sensors provide additional information about the
3D shape of the scene. Recently, several approaches have
demonstrated that reliable, real-time human pose recognition
is feasible [10], [12], [13]. However, all of these approaches
only use a single sensor and are thus still sensitive to partial
(self-)occlusions. With the recent market launch of low-
cost depth sensors such as the Microsoft Kinect and Asus

1 Licong Zhang and Dongheui Lee are with the Department of Electrical
Engineering and Information Technology, Technical University of Munich,
Germany. {licong.zhang,dhlee}@tum.de

2 Jürgen Sturm and Daniel Cremers are with the Computer Vision Group
at the Computer Science Department, Technical University of Munich,
Germany. {sturmju,cremers}@in.tum.de

This research is partly supported by the DFG excellence initiative
research cluster ”Cognition for Technical Systems CoTeSys” and Institute
of Advanced Study, TUM

Fig. 1. Motion capture with multiple depth cameras significantly reduces
ambiguities and inaccuracies due to occlusions. From left to right: the human
actor, the joint point cloud observed by the two Kinect sensors and the
estimated human pose.

Fig. 2. Setup used for evaluating our approach. Two Kinect sensors are
placed in opposite corners of a room. Our approach is robust against (self-
)occlusions (red) while existing approaches only use a single sensor (on
the right) and are far more sensitive (blue, OpenNI). The ground truth is
indicated in black.

Xtion sensor, the question in our point of view is how these
methods can be extended to multi-sensor setups.

In this paper we contribute a novel approach, named
Multiple Depth Camera Approach (MDCA), to track human
motion from multiple Kinect sensors (Fig. 1). Our approach
includes fast data fusion and association, a flexible shape
model and an efficient estimation method based on particle
filtering. The goal of our approach is to track the human pose
with 22 DOF. To efficiently track the human pose, we use
annealed particle filtering in combination with partitioned
sampling. Furthermore, we implemented a simple coarse-
to-fine search to robustly detect the initial pose from a
wide range of configurations. Our system is able to track
human motion in real-time (15Hz) using a GPGPU. In the
experimental evaluation, we found that our tracker clearly
outperforms existing state-of-the-art trackers such as the
Microsoft Kinect SDK or the OpenNI tracker in terms of
robustness against occlusion and ambiguity resolution. In
particular, our system can continuously track a 360◦ human
walking motion (shown in Fig. 2) which is not possible with

Fig. 3. Our human model. From left to right: the kinematic model, the
shape model based on the kinematic model, the shape model.

the other systems.

II. RELATED WORK

Several surveys [1], [2], [3] provide an excellent overview
covering the sensors, models and estimation methods in
motion tracking. We only focus our review on marker-less
approaches. Camera-based methods have a long history [4],
[5], [6], [7], [8]. However, monocular setups are highly sen-
sitive to occlusions, while multi-view methods are in general
computationally expensive. Recently, depth sensors such as
time-of-flight cameras [12] and structured-light systems [10]
are gaining interest as they directly provide the 3D geometry
of the scene which simplifies segmentation, detection and
tracking significantly.

For modeling and state estimation, two alternative ap-
proaches exist: Top-down approaches have an explicit model
of the human body. Sequential Monte Carlo methods [14]
such as particle filters are often used to track the human pose,
with several extensions to tackle the high dimensional search
space and to enhance the efficiency of the sampling [15],
[16], [17]. In contrast, bottom-up approaches [10], [11] aim
at the detection of body parts from the sensor data, with
no or only a minimal model of the human body. Shotton et
al. [10] learn decision trees for pixel-wise labeling of input
images. While the training process requires an enormous
amount of training images and computational resources, the
runtime classification is highly efficient (> 30Hz). Plage-
mann et al. [11] developed an approach based on the interest
point detector. There has also been increasingly more works
combining both kinds of approaches [12], [13]. Plagemann
et al. integrated the interest point approach with a particle
filter [12] and were able to track a 48-DOF human pose at
4 to 10 Hz on a GPGPU. Baak et al. [13] extend this idea
by means of a (pre-trained) pose database from which they
can efficiently obtain relevant pose estimates.

All approaches mentioned above operate on monocular
depth images and it is not clear how they can be applied in
a multi-view setup. In contrast, we fuse the individual depth
images to a joint point cloud and use an efficient particle
filtering approach for pose estimation. In contrast to previous
work, this allows us to estimate the human pose from all
available data to increase the robustness against occlusions.
To the best of our knowledge, this is the first work to use
multiple depth cameras for human motion capture.

Quadrant 3

Quadrant 2

Quadrant 4

Quadrant 1

c

a b

d l

Quadrant 3

Quadrant 2

Quadrant 4

Quadrant 1
a1

l

a2

a1

Fig. 4. The parameterizations of the torso and upper leg models from left
to right

Extended cylinder model Area-of-interest

Fig. 5. Illustration of the idea of the area-of-interest in torso. The surface
area near the shoulder joints are excluded from the original model.

III. HUMAN MODEL

The first step for detecting and tracking persons from
depth data is to define a human model that describes the
3D appearance of the human. This model thus defines both
the kinematics of the human body as well as its shape. Fig. 3
schematically depicts our model.

A. Kinematic Model

In particular, we employ a kinematic tree model with 22
DOF, consisting of joints and body parts (torso and limbs),
originating from the pelvis. In total, our model has 9 body
parts, namely the torso, the right and left upper arm, lower
arm, upper leg and lower leg. These body parts are referred
to with the abbreviations {t, rua, rla, lua, lla, rul, lul, rll,
lll} in the reminder of this paper. The pose of this model is
then defined by a 22-dimensional vector x ∈ R22 describing
the configurations of the joints. Note that most joints have 3
DOF, while others have only one (see Fig. 3). Furthermore,
we enforce certain constraints on this configuration vector
(e.g. joint limits). Each body part is defined by the static
transformation between the two adjacent joints, which is
defined by a set of kinematic parameters θkin .

B. Shape Model

We assign to each body part a local coordinate system
which originates at the beginning of the body part (see Fig. 4
for torso and upper leg) with the z-axis on the central axis
of the body part and the x-y plane perpendicular to it. Based

on this coordinate system, we define the shape of the body
part using an extended cylinder model.

Suppose that y = (x, y, z)T ∈ R3 denotes the position
of a 3D point expressed in the local coordinate system of a
body part. If the body part is a perfect cylinder with height
l and radius r, a point lying on the surface is characterized
by

x2

r2
+
y2

r2
= 1 and 0 ≤ z ≤ l . (1)

To enhance the flexibility, we extend the circle to a shape
consisting of 4 quarter ellipses (one in each quadrant).
Furthermore, the half-radii of the quarter ellipses ajfj(z) and
bjgj(z) (j ∈ [1, 4] as quadrant index) depend on the z-value
of the point in the local coordinate system. The extended
model is thus given by

x2

a2jf
2
j (z)

+
y2

b2jg
2
j (z)

= 1 and 0 ≤ z ≤ l . (2)

The functions fj(z) and gj(z) can be customized to fit to
different real human body part shapes. Using this model,
a large variety of different shapes can be expressed. For
example, in the torso of our human model, shown in Fig. 4,
fj(z) and gj(z) are defined as

f1(z) = f4(z) =

{
1 if 0 ≤ z < c√

l−z
l−c if c ≤ z ≤ l

(3)

f2(z) = f3(z) =

{
1 if 0 ≤ z < d√

l−z
l−d if d ≤ z ≤ l

(4)

g1(z) = g2(z) = g3(z) = g4(z) = 1 (5)

where c and d are the built-in parameters of the functions
fj(z). In the upper legs, we use a similar model but with
f1(z) and f4(z) as the constant and f2(z) and f3(z) as linear
functions (Fig. 4). The arms and lower legs are modeled as
perfect cylinders in our human model.

Although this model ensures a high degree of flexibility,
we found that the regions close to the joints are difficult
to model due to the deformability of the tissue. To tackle
this shortcoming, we automatically exclude regions near the
joints as illustrated in Fig. 5 by computing areas-of-interest
on the surface. In our observation model as described in the
next section, only the areas of interest will be considered for
the computation of the particle likelihood.

We use θshape to refer to the parameters used to define
the shape model of all body parts. These parameters are
customized to fit to the real shape of the body parts of the
motion demonstrator.

For each human motion demonstrator, a specific set of
human model parameters θ = (θTkin ,θ

T
shape)T is needed.

Finding these parameters is beyond the scope of this paper.
However both manual calibration and automatic shape fitting
can be used for this aim.

Compared to cylindrical or mesh-based shape modeling,
we found that our shape model provides a much larger

Fig. 6. Examples of kinematic and shape parameters adapted to different
body types.

flexibility to adapt to the human body with different build and
shape, as illustrated in Fig. 6. Furthermore, the mathematical
definition of the surface shape is still very simple and can
thus be efficiently evaluated (and parallelized).

IV. POSE ESTIMATION

Our pose estimation framework is based on particle filter-
ing [14]. The objective in pose estimation is to estimate the
22-DOF configuration of the human model according to the
sensor data. We define the configuration of the human model
as the state x ∈ R22. Further, we define a point cloud y as an
unordered sequence of 3D points, i.e., y = (y(1), . . . ,y(n))
with y(i) ∈ R3. Further, the state is represented by an
unordered set of particles x = (x(1), . . . ,x(m)), each of
which with an associated importance weight w(j) ∈ R+.

In each time step, the particles from the previous step
are propagated further by the motion model p(xk|xk−1).
Subsequently, the importance weights are updated with the
observation model p(yk|xk). Both steps will be discussed in
detail in the remainder of this chapter.

To tackle the problem of high dimensionality, we combine
annealed particle filtering [15], [18] with partitioned sam-
pling [16]. In particular, we split the 22-dimensional search
space hierarchically into 5 subspaces, and run individual
particle filters in each subspace. The torso (R6) forms the
root, after which the right arm (R4), the left arm (R4),
the right leg (R4) and the left leg (R4) can be estimated
in parallel. In each subspace, we use an annealed particle
filter, which employs a multi-layered search to gradually
concentrate the particle density on areas with the highest
probability.

A. Motion Model

From time k−1 to k, we propagate all particles according
to the motion model

x
(j)
k = x

(j)
k−1 + δ(j) (6)

where δ(j) ∼ N (0,Σ) is normally distributed and Σ is a
diagonal matrix with its diagonal entries taking the values
σ2
j corresponding to the (assumed) agility of each joint.

Despite the simplicity of the motion model, we found in our
experiments that Gaussian white noise works well in practice.
We also experimented with a constant velocity model, but
achieved worse results. We believe that the reason for this is
twofold: first, humans can too quickly (de-)accelerate their

Fig. 7. Empirical validation of the probabilistic model. The columns show
the probability density of the distance observed for the torso. The sample
distribution (blue bins) is well approximated by a normal distribution (red).

limbs and second, the estimated joint-space velocities are
(due to the particle filter sampling) relatively noisy.

B. Observation Model

The objective of the observation model is to compare the
pose estimates with the sensor data and calculate a likelihood
p(x

(j)
k | yk) for each particle j. Note that in the remainder

of this section, we omit the subscripts k and k − 1 to
improve readability. Based on the shape model derived in
the previous section, the likelihood can be evaluated very
efficiently as follows. For the moment, we only consider a
single point y(i) from the point cloud and a single body
part q ∈ {t, rua, rla, lua, lla, rul, lul, rll, lll}. Further, we
assume that the transformation between the global coordinate
frame and the limb is given by a 4 × 4 matrix Mq(x(j)) ∈
SE(3) so that the point can be expressed in the limb
coordinate system as y

(i)
q = Mq(x(j))y(i) = (x, y, z)T . Our

goal is now to compute the signed distance of this point to
surface of the body part. Here, signed means that we assume
the distance is negative when the point lies within the body
part, zero exactly on its surface and positive on the outside.
This signed distance can be computed using (we omit the
quadrant index for readability)

d(y(i)
q ; q) =

√
x2

a2f2(z)
+

y2

b2g2(z)
− 1 . (7)

Note that (7) is not the Euclidean distance, but the distance
scaled according to the semi-axes of the corresponding
ellipse. Also, the range of the signed distance is d(y(i)) ∈
[−1∞). By construction, d(·) is monotonically increasing if
a point is moving away from the central axis and takes the
value 0 if the point lies on the surface.

In the ideal case, an observed (noise-free) point should be
located exactly on the surface (d(·) = 0) if the corresponding
pose estimate is optimal. However, discrepancies between
the real surface of the human body part and the modeled
one exist since our shape model is not perfect. Moreover,
all real sensor data will always contain noise and outliers.
As a consequence, the distance will behave according to
some noise distribution depending on the sensor type and
the accuracy of the human model. In our system, we assume
that this probability distribution is a zero-mean Gaussian.
Given this, we can compute the likelihood of point y(i) being
observed from body part q and with a given particle x(j) as

Fig. 8. Robust observation likelihood. Only points in the blue area are
considered during likelihood computation.

Fig. 9. Our coarse-to-fine scheme allows us to initialize the tracker auto-
matically from a wide range of initial configurations. Here, the configuration
of the upper arm is determined in two steps (left) and subsequently the lower
arm (right).

p(y(i) | x(j), q) =
1√

2πσ2
exp

(
−d

2(Mq(x(j))y(i); q))

2σ2

)
(8)

where σ2 is the variance. Fig 7 shows the empirical valida-
tion of this assumption on real sensor data. It can be observed
from the figure that for the torso part, the probabilistic
density function can be decently approximated by a zero-
mean Gaussian distribution.

C. Data Association

The prerequisite of the validity of this probabilistic model
is that the points of concern actually belong to the corre-
sponding body part. Without data association, it is unknown
to which body part a point actually belongs. While the
problem of data association is very difficult in the general
case, we pursue a simple strategy where we treat points
with a signed distance above a certain threshold as unrelated
points that can be ignored. Provided the tracking result of
the previous frame is acceptable, we can reasonably assume
that the shape model of a specific body part rendered by
the pose estimate is near the real human body part of the
current frame, in which case the absolute value of the relative
distance of the points belonging to the corresponding body
parts are close to 0. In contrast, points of other body parts
have much larger values. Therefore we can implement data
association via a distance threshold and consider only the
points within the valid range.

Aq := { i | i ∈ {1, . . . , n} with d(y(i)) < α

and i /∈ ∪i−1s=1As

}
. (9)

Here we choose the value of α manually according to
experimental experience. This idea is also shown in Fig. 8.

The likelihood that the shape model of a specific body
part match the sensor data can be obtained as

p(y | x(j), q) =
∏
i∈Aq

p(y(i) | x(j), q) (10)

where only the related points are considered, i.e., points
within the area of interest and the valid range of the signed
distance. Finally, this gives us the full observation model
required to compute the likelihood of a particle

p(y | x(j)) =
∑
q

p(q | x(j))p(y | x(j), q) (11)

with which the particle weights can be updated accordingly.
The computational cost of this algorithm depends on the

number of points in the joint point cloud, i.e., it is O(β×n),
with a setup consisting of β cameras and an average number
of points in a point cloud from a single camera of n.

D. Tracking Initialization

To find the initial pose of a motion sequence, we developed
a coarse-to-fine search paradigm that can detect the pose of
a human from a single frame of data. To this aim, we im-
plemented a hierarchical search down the kinematic tree. To
assist detection of the torso orientation, we employ recursive
principal components analysis. Then for each subspace of the
configuration, we divide the search into two phases. In the
coarse search phase, we run a particle filter on a uniform
prior distribution, in which case the estimates generated
span the entire search space uniformly. Subsequently, we re-
sample the resulting particle set using a Gaussian distribution
to further optimize the pose estimates. This method is able
to detect the configuration of a wide range of human poses
from a single frame of sensor data, provided that the human
is standing relatively straight and no ambiguous poses are
involved. Fig. 9 visualizes the basic idea of the coarse-to-
fine search of the right arm configuration.

V. EXPERIMENT

We conducted a series of experiments to verify that (a) our
approach can accurately and robustly track human motions,
(b) tracking is possible in real-time and (c) that a multi-
camera setup is significantly more robust than approaches
using only single depth camera.

A. Data Acquisition

Our experimental setup is depicted in Fig. 1. Two Kinect
sensors were placed face-to-face and extrinsically calibrated
using a checkerboard. With this setup, we recorded several
motion sequences with increasing complexity.

To evaluate our approach and compare it to other systems,
we selected four distinct points on the human actors, namely,
the right wrist (RW), left wrist (LW), right ankle (RA) and
left ankle (LA). The positions of these marker points are
provided by all three tracking systems (MDCA, OpenNI
tracker, Microsoft SDK), and moreover, can easily be iden-
tified manually. The positions of the markers on the three
systems are shown in Fig. 10. For our evaluation sequences,

Fig. 10. Position of the corresponding markers on the three systems, from
left to right, our approach, the OpenNI tracker and the Microsoft SDK.

Fig. 11. Joint point cloud. The first two figures shows the point clouds
from each individual Kinect sensor. The last figure shows the merged point
cloud.

we manually tracked these points in every tenth frame using
a GUI. The OpenNI tracker only offers one marker at the
end of each limb (hand and foot). The Microsoft SDK offers
two markers, the hand(foot) and wrist(ankle) marker. In the
comparison, we choose the wrist(ankle) marker since this
corresponds to our ground truth marker and the kinematics of
our approach. Experimental results show that average error of
the wrist(ankle) marker is smaller than the hand(foot) marker
in Microsoft SDK.

Our own tracking algorithm is implemented as a C++
program which can run either on a single CPU core or
parallelized on a GPGPU. In our approach, we down-sample
the depth images by a factor of 16 and then apply a
simple segmentation to obtain the human point cloud. The
segmented depth images were then converted to point cloud
and transformed into the global coordinate system as shown
in Fig 11.

B. Tracking Accuracy

We tested our program on different real life motion se-
quences with normal motion speed (e.g. walking, exercising,
Taiji). The experiments show that the tracker can successfully
track all these motion sequences with none or few loss of
track in certain frames.

Fig. 12 shows the tracking accuracy of the positions of
the 4 markers in a motion sequence of a human walking in
circles. The plot shows that the tracking error rarely exceeds
0.2m and is most of the time clearly below 0.1m. This
result can also be confirmed in Table. I, where the average

Fig. 12. The position error of the 4 markers compared to the ground truth
in a motion sequence of a human walking in circles.

error over all markers is 0.073m. Interestingly, the ankles are
tracked by 15% more accurate than the wrists. One reason
for this might be that more intensive arm movements than leg
movements are involved in this motion pattern. Furthermore,
tracking is on average only lost in 2.1% of the frames, despite
the occlusions due to the 360◦ walking pattern. From these
results, we conclude that our approach is both accurate and
robust.

C. Tracking Speed

The average processing time per frame of our program
on the CPU is 0.5s. If the program is run on GPGPU (a
NVidia GeForce GTX 480 card), this number is reduced
to 0.05s. Stable tracking can thus be guaranteed at 15Hz.
The processing time also depends on the parameters in the
tracking algorithm, primarily on the number of particles used.
The more particles used, the longer the processing time and
vice versa. We use 2000 particles in the experiments. It
is also influenced by the number of sensors used. Using
more sensors should improve the tracking performance, but
it also increases the computational cost and thus reducing
the operating speed.

D. Comparison with other Approaches

Furthermore, we compare our tracking approach (MDCA)
with two state-of-art tracking systems using single sensors:
the Microsoft Kinect SDK 1 and the PrimeSense OpenNI
tracker2.

Because of the given limitations of the underlying APIs,
we were only able to compare our approach to one system
at a time. Therefore, the two similar but not identical motion
sequences of a human walking in cycles were used for
comparison. One of them is shown in Fig. 2.

Fig. 13 shows the comparison between the results of
the Microsoft Kinect SDK and our approach for the right
wrist position. We can observe from this figure that both
approaches can successfully capture motion at the beginning.
But from the 30th second, the result of the Microsoft SDK
deviates from the ground truth and loses track completely,
while our approach continues to track successfully. This is an

1http://www.microsoft.com/en-us/kinectforwindows/a
2http://openni.org/docs2/Reference/smpl user tracker.html

5 10 15 20 25 30 35 40 45−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

Po
si

tio
n

[m
]

Result Comparison between Microsoft SDK and our Approach (Right Wrist Position)

X Pos Ground Truth
Y Pos Ground Truth
Z Pos Ground Truth
X Pos Microsoft SDK
Y Pos Microsoft SDK
Z Pos Microsoft SDK
X Pos Our Approach
Y Pos Our Approach
Z Pos Our Approach

Fig. 13. The position trajectory of the Microsoft SDK and our approach
compared to the ground truth of the right wrist position.

expected result, since from t = 30s, the right arm is occluded
in certain frames by the torso and no longer observable from
the camera on the right (see Fig. 2). As a result, tracking
temporarily fails. The Microsoft approach, however, quickly
recovers as soon as the occluded parts become observable
again. This experiment shows that our approach outperforms
in dealing with occlusion problems and unconstrained (360◦)
motions. In particular, as shown in Table I, our approach
looses on average track only in 1.3% of all frames, while
the Microsoft tracker has lost in more than 25% of the
trajectory. Moreover, we also (qualitatively) observe that our
approach yields similar tracking accuracies, if not better, with
the Microsoft approach in case of no occlusions.

Similar results can be observed in Fig. 14 and Table II,
which show the same comparison but now between our
approach and the OpenNI tracker. It clearly shows that in this
particular motion sequence, where many occlusion scenarios
in all the markers are involved, our approach has better
performance both in the average tracking errors (0.073m vs.
0.33m) and less loss (2.1% vs. 42.7%).

It should be noted that two factors may affect the motion
capture result collected from the Microsoft SDK and OpenNI
tracker. Firstly, the results of both approaches are trans-
formed into the coordinate system used by our approach. The
transformation we obtained with a standard checkerboard
may contain minor inaccuracies. Secondly, there could be
small discrepancies between the positions of the wrists and
ankles on the human body in different systems. However,
these two factors can only have minor influence on the
accuracies in final result, and certainly cannot explain large
tracking errors of above 0.2m in 25% and 42% of all
frames, respectively. Therefore, draw two conclusions from
these results: First, existing single-sensor trackers are highly
sensitive to occlusions, and second, multi-sensor setups, as
implemented by our approach, are significantly more robust.

From this analysis we can see that our approach is better
equipped to deal with occlusion problems, especially when
the body parts are completely blocked from one view point.
This is mainly because we use two Kinect sensors and
thus can obtain more information on the human motion.
The temporal continuality of the tracking approaches also
contributes to this aspect. Moreover, compared to others, our
approach can easily deal with the situation of the data fusion

5 10 15 20 25 30 35 40 45−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

Po
si

tio
n

[m
]

Result Comparison between OpenNI Tracker and our Approach (Right Wrist Position)

X Pos Ground Truth
Y Pos Ground Truth
Z Pos Ground Truth
X Pos OpenNI Tracker
Y Pos OpenNI Tracker
Z Pos OpenNI Tracker
X Pos Our Approach
Y Pos Our Approach
Z Pos Our Approach

Fig. 14. The position trajectory of the OpenNI Tracker and our approach
compared to the ground truth the right wrist position.

TABLE I
COMPARISON OF MDCA WITH MICROSOFT KINECT SDK.

Error <0.1m <0.15m <0.2m ≥0.2m Avg.
Marker Approach [%] [%] [%] [%] [m]

RW MDCA 84.0 98.0 100.0 0.0 0.063
MS-Kinect 49.3 61.3 66.0 34.0 0.310

LW MDCA 62.6 97.3 100.0 0.0 0.087
MS-Kinect 33.3 67.3 70.0 30.0 0.226

RA MDCA 94.0 98.7 100.0 0.0 0.056
MS-Kinect 29.3 54.6 77.3 22.7 0.168

LA MDCA 81.3 92.6 94.6 5.4 0.076
MS-Kinect 8.0 67.3 83.3 16.7 0.159

Avg. MDCA 80.5 96.7 98.7 1.3 0.071
MS-Kinect 30.0 62.6 74.2 25.8 0.216

TABLE II
COMPARISON OF MDCA WITH THE OPENNI TRACKER.

Error <0.1m <0.15m <0.2m ≥0.2m Avg.
Marker Approach [%] [%] [%] [%] [m]

RW MDCA 77.3 89.3 94.0 6.0 0.081
OpenNI 27.3 53.3 62.0 38.0 0.308

LW MDCA 63.3 94.0 98.7 1.3 0.086
OpenNI 4.7 34.0 43.3 56.7 0.479

RA MDCA 90.0 98.0 100.0 0.0 0.059
OpenNI 8.7 36.7 63.4 36.6 0.292

LA MDCA 83.3 94.7 98.7 1.3 0.066
OpenNI 0.7 16.0 60.7 39.3 0.254

Avg. MDCA 78.5 94.0 97.9 2.1 0.073
OpenNI 10.4 35.0 57.3 42.7 0.333

of two or more Kinect sensors.

VI. CONCLUSIONS

In this paper, we proposed a motion tracking approach
that can be used with any number of Kinect sensors. We
proposed a novel, flexible human surface modeling method
that we integrated into a probabilistic observation model. We
use annealed particle filtering in combination with partition
sampling to track the 22-DOF human pose in real-time
using GPGPU support. Furthermore, we proposed a simple

coarse-to-fine scheme for finding the initial pose of a motion
sequence from a wide range of initial poses. In an extensive
set of experiments on real data, we demonstrated that our
approach is robust and accurate, and performs significantly
better in the presence of occlusions than current state-of-the-
art implementations of single-sensor trackers.

REFERENCES

[1] T. Moeslund, A. Hilton, V. Krueger. A Survey of Advances in Vision-
based Human Motion Capture and Analysis. Journal on Computer
Vision and Image Understanding, Volume 104 Issue 2, 2006.

[2] R. Poppe. Vision-based Human Motion Analysis: An Overview. Journal
on Computer Vision and Image Understanding, Volume 108 Issue 1-2,
2007.

[3] C. Cedras, M. Shah. Motion-based Recognition a Survey. Journal on
Image and Vision Computing, Volume 13, Issue 2, Pages 129-155, 1995.

[4] C. Sminchisescu, B. Triggs. Covariance Scaled Sampling for Monocular
3D Body Trakcing. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, Volume 1, Pages I-447-I-454, 2001.

[5] A. Agarwal, B. Triggs. Recovering 3D Human Pose from Monocular
Images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Volume 28, Issue 1, Pages 44-58, 2006.

[6] D. Lee and Y. Nakamura. Motion Capturing from Monocular Vision by
Statistical Inference Based on Motion Database: Vector Field Approach.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Pages 617-623, 2007.

[7] D. Gavrila, L. Davis, 3-D Model-based Tracking of Humans in Action:
A Multi-view Approach. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, San Francisco, Pages 73-80, 1996.

[8] R. Kehl, L. Van Gool, Markerless Tracking of Complex Human
Motions from Multiple Wiews. Journal on Computer Vision and Image
Understanding, Volume 104, Issue 2, Pages 190-209, 2006.

[9] D. Glas, T. Miyashita, H. Ishiguro, N. Hagita, Laser Tracking of Human
Body Motion Using Adaptive Shape Modeling. In Proceedings of IEEE
Conference on Intelligent Robots and Systems, Pages 602-608, 2007.

[10] J. Shotton, A. Fitzgibbon, M.t Cook, T. Sharp, M. Finocchio, R.
Moore, A. Kipman, A. Blake. Real-Time Human Pose Recognition in
Parts from Single Depth Images. IEEE Conference on Computer Vision
and Pattern Recognition, Pages 1297-1304, 2011.

[11] C. Plagemann, V. Ganaphathi, D. Koller, S. Thrun. Real-time Iden-
tification and Localization of Body Parts from Depth Images. IEEE
Conference on Robotics and Automation, Pages 3108-3113, 2010.

[12] V. Ganaphathi, C. Plagemann, D. Koller, S. Thrun. Real Time Motion
Capture Using a Single Time-of-flight Camera. IEEE Conference on
Computer Vision and Pattern Recognition, Pages 755-762, 2010.

[13] A. Baak, M. Mueller, G. Bharaj, H. Seidel, C. Theobalt. A Data-
Driven Approach for Real-Time Full Body Pose Reconstruction from
a Depth Camera. IEEE International Conference on Computer Vision,
Pages 1092-1099, 2011.

[14] A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo
Sampling Methods for Bayesian filtering. Journal on Statistics and
Computing Volume 10, Issue 3, Pages 197-208, 2000.

[15] J. Deutscher, A. Blake, I. Reid. Articulated body Motion Capture by
Annealed Particle Filtering. IEEE Conference on Computer Vision and
Pattern Recognition, Volume 2, Pages 126-133, 2000.

[16] J. MacCormick , M. Isard, Partitioned Sampling, Articulated Objects
and Interface-quality Hand Tracking. In Proceedings of the 6th Euro-
pean Conference on Computer Vision-Part II, Pages 3-19, 2000.

[17] J. Mitchelson, A. Hilton. Simultaneous Pose Estimation of Multiple
People Using Multiple-view Cues with Hierachical Sampling. In Pro-
ceedings of the British Machine Vision Conference, Pages 67.1-67.10,
2003.

[18] J. Bandouch, F. Engstler, M. Beetz. Evaluation of Hierarchical Sam-
pling Strategies in 3D Human Pose Estimation. In Proceedings of the
19th British Machine Vision Conference, 2008.

[19] T. Brox, B. Rosenhahn, J. Gall, D. Cremers. Combined region-
and motion-based 3D tracking of rigid and articulated objects. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Volume 32,
Issue 3, 2009.

[20] A. Johansen. SMCTC: Sequential Monte Carlo in C++. Journal of
Statistical Software, Volume 30, Issue 6, 2009.

	Introduction
	Related Work
	Human Model
	Kinematic Model
	Shape Model

	Pose Estimation
	Motion Model
	Observation Model
	Data Association
	Tracking Initialization

	Experiment
	Data Acquisition
	Tracking Accuracy
	Tracking Speed
	Comparison with other Approaches

	Conclusions
	References

