Deep Learning for Virtual Shopping

Dr. Jürgen Sturm Group Leader RGB-D metaio GmbH

Augmented Reality with the Metaio SDK: IKEA Catalogue App

Metaio: Augmented Reality

- Metaio SDK for iOS, Android and Windows
 - Marker-based 3D tracking
 - Image-/Template-based 3D tracking
 - SLAM (natural image features, local+global bundle adjustment, relocalization)
 - Edge-based tracking (given a CAD model)
 - Hybrid tracking (combining one or more of the above)
 - − Face detection, tracking, augmentation using machine learning ← this talk!
- Company profile
 - World leading augmented reality provider, >100k active developers world-wide
 - 130+ employees, 60 developers, 30 computer vision & machine learning researchers
 - 4 locations: Munich (HQ), San Francisco, New York, Dallas
 - My role: Group leader RGB-D (face tracking and augmentation)

Motivation

- Market for online shopping is growing quickly
- Certain product categories are more difficult to sell online:
 - Furniture
 - Eyewear, earrings, makeup, hair colorant, cloth, shoes \leftarrow this talk
- Customer wants to see it / try it out him/herself before buying
- \rightarrow How can we support the customer in his buying decision?

Furniture

Sunglasses

Earrings

Challenges

- Detect and track human faces in real-time
 - Large variations in appearance (viewpoint, illumination, skin color)
 - Face is articulated (many DOF)
 - Hair can have arbitrary shape
- Automatic placement of objects
- Achieve rendering realism (occlusions, illumination, dynamics)

Furniture

Sunglasses

Earrings

Face Tracking and Reconstruction in 3D

- First result: Pandora Jewelery
 - RGB-D camera (Kinect)
 - Turn head slowly left and right to generate model
 - Place earrings manually on the head
 - Try out the live demo at our booth!

3D Face Reconstruction using Bump Maps

- Reconstruct head while user turns left and right
- Use 3D geometry as an occlusion model

3D Head Pose Estimation using Random Forests

- Train a random forest that predicts 3D head pose from depth images
 - Patch-wise classification head/no-head
 - Head pixels vote for center + head orientation
 - Estimate head center using mean shift and average inlier votes
- Recorded huge training dataset
- Allows for automatic (re-)initalization and recovery after tracking loss

Physics Simulation

- Add physics / gravity to the models for increased realism
- Unity engine

How can we make this work on smartphones?

- Smartphones don't have depth cameras
- Is this possible with a monocular camera?
- Face alignment using random regression forests + ridge regression
- Localize 68 landmarks on human face

2D Face Alignment

- Given
 - RGB image
 - 2D face detector bounding box
- Wanted
 - Face shape
- Learn a regressor that predicts shape [Ren et al., CVPR '14; Tzimiropoulos et al. ICCV '13, ...]

Input: 2D face bounding box

Output:

68 landmarks localized on face (including eyes, mouth, outline)

Approach

- Learn a regressor to predict shape increment
 - Input: Image *I* and initial shape
 - -Output: Shape increment
- Apply a cascade of regressors
 - Contains T regressors
 - At every stage, compute

Regression Model

- Learn meaningful binary features using random forest
- Extract binary feature vector (relative to current shape estimate)
- Learn mapping from binary feature vectors to shape increment
- Apply linear shape update based on extracted feature vector

Random Forest

- Train one random forest per landmark
- Random forests consist of multiple random trees
- Feature: Compare pixel intensity relative to landmark positions
- Select features that maximize information gain
- Concatenate output to obtain a binary feature vector

Random Forest

- Train one random forest per landmark
- Random forests consist of multiple random trees
- Feature: Compare pixel intensity relative to landmark positions
- Select features that maximize information gain
- Concatenate output to obtain a binary feature vector

Random Forest

- Train one random forest per landmark
- Random forests consist of multiple random trees
- Feature: Compare pixel intensity relative to landmark positions
- Select features that maximize information gain
- Concatenate output to obtain a binary feature vector

Learn mapping from binary features to shape increments using ridge regression

data term

meto

regularizer

Learn mapping from binary features to shape increments using ridge regression

• Weighting matrix W models correlations between landmarks

data term

regularizer

meto

Learn mapping from binary features to shape increments using ridge regression

• Weighting matrix W models correlations between landmarks

data term

regularizer

meto

Learn mapping from binary features to shape increments using ridge regression

• Weighting matrix W models correlations between landmarks

data term

regularizer

Face Alignment Summary

- Provides stable 2D landmark positions on face
- Can handle partial occlusions, landmarks are correctly correlated
- Enables automatic placement of objects on face
 - Earrings
 - Sunglasses
- Enables face augmentation without depth camera
- Very fast, current (unoptimized) implementation runs easily at 50fps on smartphones/tablets (500 fps on laptop)
- Try it yourself at our booth

Pose Estimation using Convolution Neural Networks (CNNs)

- Estimate 2D positions of 14 full body joints
- For whole body augmentations (e.g., cloth)
- Can we use convolutional neural networks for this? [Toshev et al., CVPR '14; Jia et al., arXiv '14; ...]

Cascade of Convolutional Neural Networks

- Initial stage takes downsampled image as input
- Second stage takes zoomed-in region around predicted joint positions

Pose Estimation using Convolution Neural Networks (CNNs)

- Implementation based on Caffe library from Berkeley
- Dataset:
 - LSP dataset (Leeds Sports Pose Dataset)
 - 11000 training, 1000 testing images
- Training:
 - Nvidia Quadro K4000 3GB Memory, 784 cores
 - Time: approximately 4 days
 - 180.000 iterations
- Promising results on test data
- Application to smartphones is difficult
 - Large memory requirements
 - High computational demands

metc

Conclusion

- Take home message from this talk: Machine Learning is a key enabler for our technology!
- This Talk: Deep Learning for Virtual Shopping
 - Face detection, reconstruction for virtual-try on applications
 - Head pose estimation in 3D using random forests
 - Face alignment using random forests (localize 2D landmarks on the face)
 - Full body human pose estimation using CNNs
- We're looking for full time employees and summer interns (MSc and PhD)
 - Machine Learning
 - Computer Vision
- Visit us at our booth and see our live demos!

Metaio

Phone (EMEA): +49-89-5480-198-0 Phone (US): +1-415-814-3376 info@metaio.com www.metaio.com

facebook.com/metaio

@twitt_AR twitter.com/#!/twitt_AR

augmentedblog.wordpress.com

www.youtube.com/user/metaioAR

