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MotivationMotivation

Wouldn‘t it be cool to have a 3D photo booth?

Questions:

• How to scan a person in 3D?

• How to prepare the model for 3D printing?



Problem DescriptionProblem Description

• Setup:

Static RGB-D camera, person sitting on a swivel chair

• Given: A sequence of color and depth images

• Wanted: Accurate, watertight 3D model



Signed Distance Function (SDF)
[Curless and Levoy, ’96]

Signed Distance Function (SDF)
[Curless and Levoy, ’96]

D(x) < 0

D(x) = 0

D(x) > 0

Negative signed distance (=outside)

Positive signed distance (=inside)



Signed Distance Function (SDF)
[Curless and Levoy, ’96]

Signed Distance Function (SDF)
[Curless and Levoy, ’96]

• Compute SDF from a depth image

• Measure distance of each voxel to the observed surface

• Can be done in parallel for all voxels ( GPU)

dobs = z ¡ I Z (¼(x; y; z))

camera



Signed Distance Function (SDF)
[Curless and Levoy, ’96]

Signed Distance Function (SDF)
[Curless and Levoy, ’96]

• Calculate weighted average over all measurements

• Assume known camera poses (for now)

c1

cn¡ 1

cn

...

Several measurements of each voxel
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Mesh Extraction using Marching CubesMesh Extraction using Marching Cubes

• Find zero-crossings in the signed distance function by interpolation



Estimating the Camera PoseEstimating the Camera Pose

• SDF built from the first k frames
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Estimating the Camera PoseEstimating the Camera Pose

• We seek the next camera pose (k+1)
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Estimating the Camera PoseEstimating the Camera Pose

• KinectFusion generates a synthetic depth image from SDF and aligns it

using ICP
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Estimating the Camera PoseEstimating the Camera Pose

• Our approach: Use SDF directly during minimization
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Estimating the Camera PoseEstimating the Camera Pose

• Our approach: Use SDF directly during minimization



Evaluation on Benchmark
[Bylow, Sturm, Kerl, Kahl, Cremers; RSS 2013]

Evaluation on Benchmark
[Bylow, Sturm, Kerl, Kahl, Cremers; RSS 2013]

• Thorough evaluation on TUM RGB-D benchmark

• Comparison with KinFu and RGB-D SLAM

• Significantly more accurate and robust than ICP

Algorithm Resolution Teddy (RMSE) Desk (RMSE) Plant (RMSE)

KinFu 256 0.156 m 0.057m 0.598 m

KinFu 512 0.337 m 0.068 m 0.281 m

Our 256 0.086 m 0.038 m 0.047 m

Our 512 0.080 m 0.035 m 0.043 m



Automatically Close Holes
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

Automatically Close Holes
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

• Certain voxels are never observed in near range

• Regions with no data result in holes

• Idea: Truncate weights to positive values

high
visibility

no/poor
visibility



Hollowing Out
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

Hollowing Out
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

• Printing cost is mostly dominated by volume

• Idea: Make the model hollow

before after



Video (real-time)
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

Video (real-time)
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]



Examples of Printed Figures
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

Examples of Printed Figures
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]



More Examples
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

More Examples
[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

• Need a present?

• Live Demo after the talk



FabliTec 3D ScannerFabliTec 3D Scanner

• 3D scanning software “FabliTec 3D Scanner”

• TUM spin-off, founded in 2013

• Targeting private users

• Sale and user support

• Prerequisites

– Windows 7/8

– Graphics card from Nvidia

– Xbox Kinect camera

• Partners

– German RepRap GmbH

– Conrad Electronic

– Volumental (formerly Kinect-at-home)

• Download free demo version from

http://www.fablitec.com



3D Reconstruction from a Quadrocopter
[Bylow et al., RSS 2013; Sturm et al., UAV-g 2013]

3D Reconstruction from a Quadrocopter
[Bylow et al., RSS 2013; Sturm et al., UAV-g 2013]

• AscTec Pelican quadrocopter

• Real-time 3D reconstruction, position tracking and control 

(external processing on GPU)

external view estimated pose



Resulting 3D Model
[Bylow et al., RSS 2013; Sturm et al., UAV-g 2013]

Resulting 3D Model
[Bylow et al., RSS 2013; Sturm et al., UAV-g 2013]



More Examples
[Sturm, Bylow, Kerl, Kahl, Cremers; UAV-g 2013]

More Examples
[Sturm, Bylow, Kerl, Kahl, Cremers; UAV-g 2013]

• Nice 3D models, but:

– Large memory and computational requirements are suboptimal for use on 

quadrocopter

– Significant drift in larger environments

• How can we improve on this?



Dense Visual Odometry
[Steinbrücker, Sturm, Cremers, ICCV LDRMC 2011; Kerl, Sturm, Cremers, ICRA 2013]

Dense Visual Odometry
[Steinbrücker, Sturm, Cremers, ICCV LDRMC 2011; Kerl, Sturm, Cremers, ICRA 2013]

 Can we compute the camera motion directly?

 Idea

 Photo-consistency constraint

 Geometry-consistency constraint



How to deal with noise?
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

How to deal with noise?
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

• Photo-consistency constraint will not perfectly hold

– Sensor noise

– Pose error

– Reflections, specular surfaces

– Dynamic objects (e.g., walking people)

• Residuals will be non-zero

• How does the residual distribution          look like?



How to deal with noise?
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

How to deal with noise?
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

• Zero-mean, peaked distribution

• Example: Correct camera pose
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Residual Distribution
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

Residual Distribution
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

• Our goal: Find the camera pose that maximizes the observation likelihood

0

0,1

0,2

0,3

-10 -5 0 5 10

P
ro
b
ab

ili
ty

p
(r
)

Residuals r

Wrong camera pose

Correct camera pose



Dense Alignment
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

Dense Alignment
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

• Our goal: Find the camera pose that maximizes the observation likelihood

• Assume pixel-wise residuals are conditionally independent

• How can we solve this optimization problem?

compute over all pixels



Dense Alignment
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

Dense Alignment
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

• Take negative logarithm

• Set derivative to zero

• is non-linear in 

• Solve using Gauss-Newton method (linearize, solve, repeat)



Example
[Kerl, Sturm, Cremers; ICRA 2013]

Example
[Kerl, Sturm, Cremers; ICRA 2013]



Example
[Kerl, Sturm, Cremers; ICRA 2013]

Example
[Kerl, Sturm, Cremers; ICRA 2013]

Residuals before registration Residuals after registration



Coarse-to-Fine
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

Coarse-to-Fine
[Steinbrücker, Sturm, Cremers; ICCV LDRMC 2011]

• Linearization only holds for small motions

• Coarse-to-fine scheme

• Image pyramids



Dense Visual Odometry: Results
[Steinbrücker, Sturm, Cremers, ICCV LDRMC 2011; Kerl, Sturm, Cremers, ICRA 2013]

Dense Visual Odometry: Results
[Steinbrücker, Sturm, Cremers, ICCV LDRMC 2011; Kerl, Sturm, Cremers, ICRA 2013]

• Runs in real-time on single CPU core (SSE optimized)

• Available as open-source

• Average drift: ~3cm/s



Dense Visual Odometry: Results
[Kerl, Sturm, Cremers; IROS 2013]

Dense Visual Odometry: Results
[Kerl, Sturm, Cremers; IROS 2013]

• Problem: Considerable drift accumulation (1.8m/min)

• How can we further reduce this drift?

• Local drift: Track w.r.t. key frames

• Global drift: Detect loop closures and optimize pose graph



Dense Visual Odometry: Results
[Kerl, Sturm, Cremers; IROS 2013]

Dense Visual Odometry: Results
[Kerl, Sturm, Cremers; IROS 2013]

• Keyframes are added dynamically (based on entropy evaluation)

• Localize w.r.t to current keyframe (first CPU core/thread)

• Detect loop closures and optimize pose graph (second CPU core/thread)



Large-Scale 3D Reconstruction
[Steinbrücker, Kerl, Sturm, Cremers; ICCV 2013]

Large-Scale 3D Reconstruction
[Steinbrücker, Kerl, Sturm, Cremers; ICCV 2013]

• We have: Optimized pose graph

• We want: High-resolution 3D map

• Problem: High-resolution voxel grids consume much memory (grows 

cubically)

– 512^3 voxels, 24 byte per voxel  3.2 GB

– 1024^3 voxels, 24 byte per voxel  24 GB

– …

• Idea: 

– Save data in oct-tree data structure

– Only allocate cells that are close to the surface

– Store geometry at multiple resolutions

– Tree can grow dynamically (no fixed size)



Large-Scale 3D Reconstruction
[Steinbrücker, Kerl, Sturm, Cremers; ICCV 2013]

Large-Scale 3D Reconstruction
[Steinbrücker, Kerl, Sturm, Cremers; ICCV 2013]

• Runs at 200 fps on a GPU (assuming camera poses are known)



3D Mapping in Real-Time on a CPU
[Steinbrücker, Sturm, Cremers; ICRA 2014]

3D Mapping in Real-Time on a CPU
[Steinbrücker, Sturm, Cremers; ICRA 2014]

• Runs at 45 fps on CPU, available as open-source!



Same with a Monocular Camera?
[Engel, Sturm, Cremers; ICCV 2013]

Same with a Monocular Camera?
[Engel, Sturm, Cremers; ICCV 2013]

• Soon available as open-source!



SummarySummary

• (Scientific) Take home messages:

– Dense methods make better use of available data

– Supersede sparse/feature-based approaches

– Real-time visual SLAM and 3D reconstruction is there

• Dense visual odometry: simple, fast, efficient

• Dense visual SLAM: eliminates drift

• Dense 3D reconstruction: nice models

• Nice, but..

But what do we need this for??



What do we need this for?What do we need this for?

• Robotics

– Laser scanners will eventually get replaced by (depth) cameras

– Localization, mapping/SLAM, exploration, navigation

• Augmented reality (AR)

– Games that play in your home

– Virtual shopping: place furniture

– User manuals: teach interactively how to repair/maintain a device

Key capabilities:

• Know how the camera is moving (odometry)

• Know where the camera is (absolute position)

• Know how the environment looks like (occlusion modeling, scene 

understanding)



The 2014 IKEA Catalog App (powered by metaio SDK)The 2014 IKEA Catalog App (powered by metaio SDK)

Utilizes next-generation 

SLAM tracking to place 

furniture in home, easily 

and conveniently

Influences and educates 

purchasing decision while 

driving massive brand 

awareness

http://www.youtube.com/watch?v=vDNzTasuYEw

http://www.youtube.com/watch?v=vDNzTasuYEw


Volkswagen XL1 MARTA (powered by metaio SDK)Volkswagen XL1 MARTA (powered by metaio SDK)

First-ever integrated AR 

support system for service 

technicians

Visualizes and overlays 

animated step-by-step 

service instructions 

Utilizes Metaio’s most 

robust 2D and 3D AR 

tracking technology.

Copyright ©Volkswagen AG http://www.youtube.com/watch?v=h2l3VzrkmRY

http://www.youtube.com/watch?v=h2l3VzrkmRY


Some of the AR apps based on metaio SDK Some of the AR apps based on metaio SDK 
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 ONLY dedicated company to 

serve the entire AR value chain

 10+ years of professional 

experience in AR development

 130+ people working in 

Germany (HQ) and the USA

 1000+ B2B customers 

worldwide

 100,000+ active developers 

across the world

 5million+ downloads of 

metaio´s AR browser (junaio)

metaio – A Brief introductionmetaio – A Brief introduction



AR Food Chain – Always ON, Always Augmented!

Hardware
(AREngine)

Software
AR Applications

Content
AR Usage

Users
AR Content Access



Metaio

Phone (EMEA): +49-89-5480-198-0

Phone (US): +1-415-814-3376

info@metaio.com

www.metaio.com

http://www.facebook.com/metaio

@twitt_AR

http://twitter.com/#!/twitt_AR

http://augmentedblog.wordpress.com/

http://www.youtube.com/user/metaioAR

We’re hiring!


