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Introduction

= (RGB-D) Cameras are rich sensors that provide
intensities, color, depth at video frame rates

= Lightweight and cheap

= Many useful applications in robotics:

Localization, mapping, navigation, obstacle
avoidance




Feature-based Visual Navigation
[Engel, Sturm, Cremers, IROS ‘12]




Feature-based Visual Navigation
[Engel, Sturm, Cremers, IROS ‘12]

= Architecture

| Quadcopter < |

@200Hz @100Hz

Monocular SLAM EXte”dFe”‘:e'ia'ma” s PID Control

= Based on PTAM [Klein and Murray, ISMAR ‘07]

| Video | IMU ControIJ
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Motivation

= Video feed from quadrocopter
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Motivation

= What PTAM actually sees




Motivation

= Problem: Most approaches only use a small
fraction of the available data

= Keypoint detection
= Visual features

= Question: How can we use most/all
information to maximize the performance?

= |n this talk: Dense methods for localization and
mapping
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Outline of the Talk

= Part 1: Dense tracking
= Part 2: Dense reconstruction

= Part 3: Evaluation and benchmarking
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Related Work on Dense Tracking

= | ucas and Kanade
(IJCAI'81)

= Lovegrove et al.
(IV'11)

= Newcombe et al. (ICCV’11) [ [

= Comport/Tykkala et al.
(ICCV’11)
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Dense Tracking

= How can we exploit ALL data of the image?
= |dea

= Photo-consistency constraint
[1(x) = I, (m(ge(2 - x)) for all pixels x
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How to deal with noise?

= Photo-consistency constraint will not perfectly
hold

= Sensor noise
= Pose error
= Reflections, specular surfaces
= Dynamic objects (e.g., walking people)
= Residuals will be non-zero
r=15(x)— L (m(ge(z - x))
= Residual distribution p(7)
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Residual Distribution

= Zero-mean, peaked distribution
= Example: Correct camera pose
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Residual Distribution

= Zero-mean, peaked distribution
= Example: Wrong camera pose
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Residual Distribution

" Goal: Find the camera pose that maximizes the
observation likelihood
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What is a Good Model for the
Residual Distribution?
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g --------- - normal distribution
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Weighted Error
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Example Weights

= Robust sensor model allows to down-weight
outliers (dynamic objects, motion blur,
reflections, ...)

Scene Residuals Weights
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Motion Estimation

= Goal: Find the camera pose that maximizes the
observation likelihood

" = arg mox H p(ri(&))

/

compute over all pixels

= Assume pixel-wise residuals are conditionally
independent

= How can we solve this optimization problem?
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First input image

Residuals Image Jacobian for
Camera motion along x axis
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Approach

= Take negative logarithm
EMAP = arg mfin Z —log p(r;(&))

= Set derivative to zero

dlogp(ri(§)) Olog p(r;) Ori(§) 1
Z ¢ Z or; e 0

? (
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Approach (cont.d)

= This can be rewritten as a weighted least
squares problem

§* = argmin Z w(r;)(ri(€))?

5 A
[4

Ologp(r;) 1
0 T T;

with weights w(r;) =

" (&) is non-linearin §
= Need to linearize, solve, and iterate
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Iteratively Reweighted Least Squares

Problem: ¢ = argmin Z w(r;) (ri(€))

5 .
i

Algorithm:

1. Compute weights w(r;) = Og)f:(' ),l

2. Linearize in the camera motion §
rmin(§) = 7(0) + JAE
3. Build and solve normal equations
JIWIAE = —J " Wr(0)
4. Repeat until convergence
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Coarse-to-Fine

" Linearization only holds for small motions
= Coarse-to-fine scheme
" Image pyramids

Dense Localization and Mapping 24 Jargen Sturm, Computer Vision Group, TUM



Dense Tracking: Results

[Steinbriicker et al., ICCV LDRMC’11]




Summary: Dense tracking

= Pro
= Super fast, highly accurate
" Low memory consumption

= Con

= Accumulates drift over time, sometimes diverges

= Next steps
= Apply this method on the quadrocopter
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Dense Reconstruction

= Can we use the same principle for 3D
reconstruction?

= Photo-consistency constraint
[1(x) = I (m(ge(2 - x)) for all pixels x
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Dense Reconstruction

= Dense tracking [steinbriicker et al., ICCV LDRMC‘11]

= Given intensity images and depth maps
" Estimate camera pose

min 11 (x) — I (m(ge(z - x))|” dx
- ()

= Dense reconstruction [stihmer et al., DAGM’10]
= Given intensity images and camera poses
= Estimate depth map

min [ |10 ~ L (x((z )

Dense Localization and Mapping Jurgen Sturm, Computer Vision Group, TUM

(N

dx



Dense Reconstruction: Results

[Stiihmer et al., DAGM’10]

Input: Intensity images + pose Output: Estimated Geometry
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Evaluation and Benchmarking

= How can we evaluate such methods?

= What are good evaluation criteria?
= Accuracy of the estimated camera trajectory
= Robustness to dynamic objects, noise, ...
= Accuracy of the 3D model
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Existing Benchmarks

" |ntel dataset: laser + odometry [Haehnel et al., 2004]

= New College dataset: stereo + omni-directional vision
+ laser + IMU [smith et al., JIRR’2009]

= KITTI Vision benchmark: stereo [Geiger et al., cvPrR'12]
= Qur contribution: Dataset for RGB-D evaluation

o mam oy e

.......

Intel New College RGB-D
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Recorded Scenes

= Different environments (office, industrial hall, ...)

" Large variations in camera speed, camera motion,
illumination, number of features, dynamic objects, ...

= Handheld and robot-mounted sensor

o)
X [m] X [m] m] x [m]
(a) frl/xyz (b) fr1/room (c) fr2/desk (d) fr2/slam
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Dataset Acquisition

= Motion capture system
= Camera pose (100 Hz)

= Microsoft Kinect (later: Asus Xtion Pro Live)
= Color images (30 Hz)
= Depth images (30 Hz)

= External video camera (for documentation)
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Motion Capture System

" 9 high-speed cameras mounted in room

= Cameras have active illumination and pre-process
image (thresholding)

= Cameras track positions of retro-reflective markers
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Calibration

Calibration of the overall system is not trivial:
1. Intrinsic calibration (Mocap + Kinect)
2. Extrinsic calibration (Kinect vs. Mocap)

3. Time synchronization (Kinect vs. Mocap)

Dense Localization and Mapping 35 Jurgen Sturm, Computer Vision Group, TUM



Tum Computer Vision Group - | »

€& — C © visionintum.de/data/datasets/rgbd-dataset w © % @ ‘\

1.+ Gomputer Vision Group

Technische Universitat Munchen

&~ ogin

m

p Search Home » Datasets and Software » Datasets »* RGB-D SLAM Dataset and Benchmark

RGB-D SLAM Dataset and Benchmark

Home iouick Links -

S i :
Publications Contact. Jurgen Sturm

Download page
File formats

We provide a large dataset containing RGB-D data and ground-truth data with the goal to
establish a novel benchmark for the evaluation of visual odometry and visual SLAM

¥ Datasets and Software systems. Our dataset contains the color and depth images of a Microsoft Kinect sensor |
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automated evaluation tool to help vou with the evaluation. There is also an online version of the tool. *
< | 11 »

» Workshops

BN

» Tutorials




Tm Computer Vision Group - [ >

€& — C ©® visionintum.de/data/datasets/rgbd-dataset/download w © % @ X}

[

1+ . GComputer Vision Group TUTI

Technische Universitat Munchen

&=L ogin
o Search Home » Datasets and Software » Datasets * RGB-D SLAM Dataset and Benchmark > download
Dataset Download
Home
Publications We recommend that you use the "xyz’ series for your first experiments. The motion is relatively small, and only a
small velume on an office desk is covered. Once this works. you might want to try the ‘desk’ dataset, which covers
» Research four tables and contains several loop closures.
¥ Datasets and Software We are happy to share our data with other researchers. Please refer to the respective publication when using this
data.
¥ Datasets
Remarks:

Multiview Datasets
* The file formats are described here.

® The intrinsic camera parameters are here.
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File Formats

" |n total: 69 sequences (33 training, 36 testing)

"= One TGZ archive per sequence, containing
= Color and depth images (PNG)
= List of color images (timestamp filename)
" List of depth images (timestamp filename)
= List of camera poses (timestamp tx ty tz gx qy gz qw)
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What Is a Good Evaluation Metric?

= Visual odometry system outputs

= Camera trajectory (accumulated)

= Visual SLAM system outputs
= Camera trajectory
= 3D map

"= Ground truth
= Camera trajectory
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What Is a Good Evaluation Metric?

= Trajectory comparison
= Ground truth trajectory
= Estimate camera trajectory

= Two evaluation metrics
= Drift per second
= Global consistency

Ground truth trajectory Q.
Evaluation
metric

Estimated camera trajectory P,.,

Dense Localization and Mapping 41

Q1,-..,Qn € SE(3)
Py, ...,P, € SE(3)

Scalar performance index
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Relative Pose Error (RPE)

= Measures the (relative) drift between the i-th
frame and the (i+A)-th frame

b = (Q;lQi—kA) - (R_lp»iJrA)

Relative error True motion Estimated motion
Ground truth Estimated traj.
Relative error 1+ JAN
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Relative Pose Error (RPE)

How to choose the time delta A?

= For odometry methods:
= A=1: Drift per frame
= A=30: Drift per second

= For SLAM methods:

= Average over all possible deltas
= Measures the global consistency
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Absolute Trajectory Error (ATE)

= Alternative method to evaluate SLAM systems
= Requires pre-aligned trajectories

Absolute error Groundtrutbh Alignment Estimated

Absolute error

Ground truth \

Pre-aligned ____,
estimated traj.
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Evaluation Tools

= Average over all time steps

RMSE(Ey,) = (& X || trans(E)|)”

1

= Evaluation scripts for both evaluation metrics
available (Python)

" Qutput: RMSE, median, mean
= Plot to png/pdf (optional)
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Comparison of RPE and ATE

= RPE and ATE are strongly related
= RPE considers additionally rotational errors
= RPE > ATE
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Submission form for automatic evaluation of RGB-D SLAM results

Groundtruth trajectory

[=]

Vf-re-i-burg 1'/5('yz

Estimated trajectory | Datei auswahlen | Keine ausgewahit

Evaluation options Offset- |0.00

Scale: |1.00

| seconds (add to stamps of estimated traj.)
j (scale estimated traj. by this factor)

@ absolute trajectory error (recommended for the evaluation of visual SLAM
methods)

@ relative pose error for pose pairs with a distance of |1 :second'('sr)rEl
(recommended for the evaluation of visual odometry methods)
© relative pose error for all pairs (downsampled to | 10000 | pairs)

Evaluation mode

Start evaluation

Runs the evaluation script on your data and displays the result. No data will be permanently saved on our servers.
Alternatively, you can also download the evaluation script and perform the evaluation offline. Additional information
about the evaluation options and the file formats is available. We also provide an example trajectory for
freiburg1/yz by @ RGBD-SLAM as well as instructions how fo @ reproduce these trajectories.
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 compared pose pairs 786 pairs | =
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Summary — TUM RGB-D Benchmark

= Dataset for the evaluation of RGB-D SLAM systems
= Ground-truth camera poses
= Evaluation metrics + tools available

= Since August 2011:
= >17.000 visitors
= >4.500 online trajectory evaluations
= >15 published research papers using the dataset

= Next steps:
= Possibility to upload own trajectories/publications
= Results page and automated ranking
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Conclusion

= Dense methods bear a large potential
= Dense camera tracking
= Dense 3D reconstruction
= Open question: Estimate both at the same time?

"= Benchmarks stimulate the comparison of
alternative approaches

= Please contact us if you are interested in a
collaboration!
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