

Computer Vision Group Prof. Daniel Cremers

Dense Localization and Mapping

Jürgen Sturm

Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, and Daniel Cremers

Introduction

- (RGB-D) Cameras are rich sensors that provide intensities, color, depth at video frame rates
- Lightweight and cheap
- Many useful applications in robotics: Localization, mapping, navigation, obstacle avoidance

Feature-based Visual Navigation [Engel, Sturm, Cremers, IROS '12]

Feature-based Visual Navigation [Engel, Sturm, Cremers, IROS '12]

Architecture

Based on PTAM [Klein and Murray, ISMAR '07]

Motivation

Video feed from quadrocopter

Motivation

What PTAM actually sees

Motivation

- Problem: Most approaches only use a small fraction of the available data
 - Keypoint detection
 - Visual features
- Question: How can we use most/all information to maximize the performance?

 In this talk: Dense methods for localization and mapping

Outline of the Talk

- Part 1: Dense tracking
- Part 2: Dense reconstruction
- Part 3: Evaluation and benchmarking

Related Work on Dense Tracking

- Lucas and Kanade (IJCAI'81)
- Lovegrove et al. (IV'11)
- Newcombe et al. (ICCV'11)
- Comport/Tykkälä et al. (ICCV'11)

Dense Tracking

- How can we exploit ALL data of the image?
- Idea

Photo-consistency constraint

 $I_1(\mathbf{x}) = I_2\left(\pi(g_{\xi}(\boldsymbol{z}\cdot\mathbf{x})) \text{ for all pixels } \mathbf{x}\right)$

Dense Localization and Mapping

How to deal with noise?

- Photo-consistency constraint will not perfectly hold
 - Sensor noise
 - Pose error
 - Reflections, specular surfaces
 - Dynamic objects (e.g., walking people)
- Residuals will be non-zero

$$r = I_1(\mathbf{x}) - I_2\left(\pi(g_{\xi}(z \cdot \mathbf{x}))\right)$$

• Residual distribution p(r)

Residual Distribution

- Zero-mean, peaked distribution
- Example: Correct camera pose

Residual Distribution

- Zero-mean, peaked distribution
- Example: Wrong camera pose

Residual Distribution

 Goal: Find the camera pose that maximizes the observation likelihood

What is a Good Model for the Residual Distribution?

Weighted Error

Example Weights

 Robust sensor model allows to down-weight outliers (dynamic objects, motion blur, reflections, ...)

Scene

Residuals

Weights

Motion Estimation

 Goal: Find the camera pose that maximizes the observation likelihood

$$\xi^* = \arg \max_{\xi} \prod_{i} p(r_i(\xi))$$
compute over all pixels

- Assume pixel-wise residuals are conditionally independent
- How can we solve this optimization problem?

Example

First input image

Residuals

Second input image

Image Jacobian for Camera motion along x axis

Approach

Take negative logarithm

$$\xi_{\text{MAP}} = \arg\min_{\xi} \sum_{i} -\log p(r_i(\xi))$$

Set derivative to zero

$$\sum_{i} \frac{\partial \log p(r_i(\xi))}{\partial \xi} = \sum_{i} \frac{\partial \log p(r_i)}{\partial r_i} \frac{\partial r_i(\xi)}{\partial \xi} \stackrel{!}{=} 0$$

Approach (cont.d)

This can be rewritten as a weighted least squares problem

$$\xi^* = \arg \min_{\xi} \sum_{i} w(r_i) (r_i(\xi))^2$$
with weights $w(r_i) = \frac{\partial \log p(r_i)}{\partial r_i} \frac{1}{r_i}$

- $r_i(\xi)$ is non-linear in ξ
- Need to linearize, solve, and iterate

Iteratively Reweighted Least Squares

Problem:
$$\xi^* = \arg\min_{\xi} \sum_i w(r_i)(r_i(\xi))^2$$

Algorithm:

- **1.** Compute weights $w(r_i) = \frac{\partial \log p(r_i)}{\partial r_i} \frac{1}{r_i}$
- 2. Linearize in the camera motion ξ $r_{\rm lin}(\xi) = r(0) + J\Delta\xi$
- 3. Build and solve normal equations

$$J^T W J \Delta \xi = -J^T W \mathbf{r}(\mathbf{0})$$

4. Repeat until convergence

Dense Localization and Mapping

Coarse-to-Fine

- Linearization only holds for small motions
- Coarse-to-fine scheme
- Image pyramids

Dense Tracking: Results

[Steinbrücker et al., ICCV LDRMC'11]

Summary: Dense tracking

Pro

- Super fast, highly accurate
- Low memory consumption
- Con
 - Accumulates drift over time, sometimes diverges
- Next steps
 - Apply this method on the quadrocopter

Dense Reconstruction

Can we use the same principle for 3D reconstruction?

Photo-consistency constraint $I_1(\mathbf{x}) = I_2\left(\pi(g_{\xi}(\boldsymbol{z} \cdot \mathbf{x})) \text{ for all pixels } \mathbf{x}\right)$

Dense Reconstruction

- Dense tracking [Steinbrücker et al., ICCV LDRMC'11]
 - Given intensity images and depth maps
 - Estimate camera pose $\min_{\xi} \int_{\Omega} |I_1(\mathbf{x}) - I_2(\pi(g_{\xi}(z \cdot \mathbf{x})))|^2 \, \mathrm{d}\mathbf{x}$
- Dense reconstruction [Stühmer et al., DAGM'10]
 - Given intensity images and camera poses
 - Estimate depth map $\min_{z} \int_{\Omega} |I_1(\mathbf{x}) - I_2(\pi(g_{\xi}(z \cdot \mathbf{x})))|^2 \, \mathrm{d}\mathbf{x}$

Dense Reconstruction: Results

[Stühmer et al., DAGM'10]

Input: Intensity images + pose

Output: Estimated Geometry

Evaluation and Benchmarking

- How can we evaluate such methods?
- What are good evaluation criteria?
 - Accuracy of the estimated camera trajectory
 - Robustness to dynamic objects, noise, ...
 - Accuracy of the 3D model

Existing Benchmarks

- Intel dataset: laser + odometry [Haehnel et al., 2004]
- New College dataset: stereo + omni-directional vision
 + laser + IMU [Smith et al., IJRR'2009]
- KITTI Vision benchmark: stereo [Geiger et al., CVPR'12]
- Our contribution: Dataset for RGB-D evaluation

Intel

New College

KITTI

RGB-D

Recorded Scenes

- Different environments (office, industrial hall, ...)
- Large variations in camera speed, camera motion, illumination, number of features, dynamic objects, ...
- Handheld and robot-mounted sensor

Dense Localization and Mapping

Jürgen Sturm, Computer Vision Group, TUM

Dataset Acquisition

- Motion capture system
 - Camera pose (100 Hz)
- Microsoft Kinect (later: Asus Xtion Pro Live)
 - Color images (30 Hz)
 - Depth images (30 Hz)
- External video camera (for documentation)

Motion Capture System

- 9 high-speed cameras mounted in room
- Cameras have active illumination and pre-process image (thresholding)
- Cameras track positions of retro-reflective markers

Calibration

Calibration of the overall system is not trivial:

- 1. Intrinsic calibration (Mocap + Kinect)
- 2. Extrinsic calibration (Kinect vs. Mocap)
- 3. Time synchronization (Kinect vs. Mocap)

⇒ C © vi	C (© vision.in.tum.de/data/datasets/rgbd-dataset					
	Comp	outer Vision Group	he Universität München			
≂Login						
P s	Search	Home + Datasets and Software + Datasets + RGB-D SLAM Dataset and Benchmark				
		RGB D SI AM Dataset and Benchmark				
Home			Quick Links			
Publications		Contact: Jürgen Sturm	Download page File formats Camera parameters			
▶ Research		We provide a large dataset containing RGB-D data and ground-truth data with the goal to establish a novel benchmark for the evaluation of visual odometry and visual SLAM				
Datasets and S	Software	systems. Our dataset contains the color and depth images of a Microsoft Kinect sensor				
Datasets		resolution (640×480). The ground-truth trajectory was obtained from a high-accuracy motion	n-capture system with			
Multiview Datas	sets	eight high-speed tracking cameras (100 Hz). Further, we provide the accelerometer data fro	om the Kinect. Finally, w			
Deformable Sha Tracking Datas	ape sets					
RGB-D SLAM and Benchma	Dataset ark					
Software						
Members		How can I use the RGB-D Benchmark to evaluate my SLAM system?				
▶ Teaching		1. Download one or more of the RGB-D benchmark sequences (file formats, useful tools)				
Workshops		 Run your favorite visual odometry/visual SLAM algorithm (for example, @RGB-D SLAM Save the estimated camera trajectory to a file (file formats, manual estimated camera trajectory) 	/)			
Tutorials		4. Evaluate your algorithm by comparing the estimated trajectory with the ground truth tra- automated evaluation tool to help you with the evaluation. There is also an online version	jectory. We provide an on of the tool.			

→ C © vision.in.tum	n.de/data/datasets/rgbd-datas	et/download			☆ 🔘 🛿	0
Com	puter Vision (Group		Technische	Universität Mün	ichen
≔Login						
P Search	Home → Datasets and Software →	Datasets → RGB-D SLAM Data	aset and Bench	mark + download		
Home Publications Research	Dataset Download We recommend that you use th small volume on an office desk four tables and contains severa	ie 'xyz' series for your first is covered. Once this works loop closures.	experiments. T s, you might wa	he motion is relative ant to try the 'desk'	ely small, and on dataset, which c	ly a covers
Datasets and Software	vve are nappy to share our data data.	a with other researchers. Ple	ease reter to th	e respective publica	tion when using	this
Multiview Datasets	Remarks:					
Deformable Shape Tracking Datasets	 The file formats are described The intrinsic camera parame We provide a set of useful to 	d here. ters are here.	isat			
RGB-D SLAM Dataset and Benchmark	 The *_validation sequences 	do not contain ground truth	. They can only	y evaluated using th	e online tool.	
• Software	Sequence name	Duration	Length	Download		
Members	Category: Testing and Debugging					
Teaching	freiburg1_xyz	30.09s	7.112m	@tgz (0.47GB)	more info	
101-1-1	freiburg1 rov	27.67s	1.664m	@tgz (0.42GB)	more info	
vvorksnops	nonburg (_ip)					

File Formats

- In total: 69 sequences (33 training, 36 testing)
- One TGZ archive per sequence, containing
 - Color and depth images (PNG)
 - List of color images (timestamp filename)
 - List of depth images (timestamp filename)
 - List of camera poses (timestamp tx ty tz qx qy qz qw)

What Is a Good Evaluation Metric?

- Visual odometry system outputs
 - Camera trajectory (accumulated)
- Visual SLAM system outputs
 - Camera trajectory
 - 3D map
- Ground truth
 - Camera trajectory

What Is a Good Evaluation Metric?

- Trajectory comparison
 - Ground truth trajectory
 - Estimate camera trajectory $P_1, \ldots, P_n \in SE(3)$
- Two evaluation metrics
 - Drift per second
 - Global consistency

 $Q_1, \ldots, Q_n \in SE(3)$ $P_1, \ldots, P_n \in SE(3)$

Relative Pose Error (RPE)

 Measures the (relative) drift between the i-th frame and the (i+Δ)-th frame

$$E_i := \left(Q_i^{-1} Q_{i+\Delta} \right)$$

Relative error

True motion

Estimated motion

Relative Pose Error (RPE)

How to choose the time delta Δ ?

- For odometry methods:
 - Δ=1: Drift per frame
 - Δ=30: Drift per second
- For SLAM methods:
 - Average over all possible deltas
 - Measures the global consistency

Absolute Trajectory Error (ATE)

- Alternative method to evaluate SLAM systems
- Requires pre-aligned trajectories

Absolute error

Groundtruth Alignment Estimated

Dense Localization and Mapping

Evaluation Tools

Average over all time steps

RMSE
$$(E_{1:n}) := \left(\frac{1}{m} \sum_{i=1}^{m} \|trans(E_i)\|^2\right)^{1/2}$$

- Evaluation scripts for both evaluation metrics available (Python)
- Output: RMSE, median, mean
- Plot to png/pdf (optional)

Comparison of RPE and ATE

- RPE and ATE are strongly related
- RPE considers additionally rotational errors
- RPE ≥ ATE

http://vision.in.tum.de/data/datasets/ rgbd-dataset

🤿 🤆 🔘 vision.in.tur	n.de/data/datasets/rgbd-data	aset/online_evaluation 🔂 🖸 🕞 🖉				
Com	puter Vision	Group Technische Universität München				
≂Login						
D Search	Home + Datasets and Software	Datasets + RGB-D SLAM Dataset and Benchmark + online_evaluation				
Home	Submission form for autom	atic evaluation of RGB-D SLAM results				
Publications	Groundtruth trajectory	freiburg1/xyz				
Research	Estimated trajectory	Datei auswählen Keine ausgewählt				
Datasets and Software	Evaluation options	Offset: 0.00 seconds (add to stamps of estimated traj.) Scale: 1.00 (scale estimated traj. by this factor)				
Datasets						
Multiview Datasets	Evaluation mode	absolute traincton (error (recommanded for the evaluation of viewal CLAM				
Deformable Shape Tracking Datasets		 absolute trajectory error (recommended for the evaluation of visual SEAW methods) relative pose error for pose pairs with a distance of 1 second(s) (recommended for the evaluation of visual odometry methods) relative pose error for all pairs (downsampled to 10000 pairs) 				
RGB-D SLAM Dataset and Benchmark						
Software	Start evaluation					
and the second second	Runs the evaluation script o	n your data and displays the result. No data will be permanently saved on our servers.				
Members	Alternatively you can also r	iownioad the evaluation script and perform the evaluation offline. Additional information				
Members Teaching	about the evaluation options	and the file formats is available. We also provide an example trajectory for				

Summary – TUM RGB-D Benchmark

- Dataset for the evaluation of RGB-D SLAM systems
- Ground-truth camera poses
- Evaluation metrics + tools available
- Since August 2011:
 - >17.000 visitors
 - >4.500 online trajectory evaluations
 - >15 published research papers using the dataset
- Next steps:
 - Possibility to upload own trajectories/publications
 - Results page and automated ranking

Conclusion

- Dense methods bear a large potential
 - Dense camera tracking
 - Dense 3D reconstruction
 - Open question: Estimate both at the same time?
- Benchmarks stimulate the comparison of alternative approaches
- Please contact us if you are interested in a collaboration!