
Approaches to 

Probabilistic Model Learning  

for Mobile Manipulation Robots 

Jürgen Sturm 

University of Freiburg 

(now at Technical University of Munich) 

 

PhD Supervisor: Wolfram Burgard 

 



Jürgen Sturm: Approaches to Probabilistic Model Learning for Manipulation Robots 

Motivation 

What could flexible service robots do for us? 

 Fetching and carrying things 

 Tidying up 

 Cleaning 
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At home In SMEs 

To accomplish these tasks, service robots 
need the capability to interact with cabinet 
doors and drawers. 

Question:  
How to model such articulated objects? 

Motivation 

In healthcare 
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Motivation 

Goal:  

Enable service robots to operate articulated 
objects. 

 

Problem:  
The work space of the robot 
is unknown at design time. 

 

Challenge:  

Robot needs to learn the  
required models on site. 
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Problem Definition 

 Given a sequence of pose observations of an 
articulated link 

 
 Estimate the kinematic model 

 

 

[Sturm et al., IJCAI’09] 

 with 
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Bayesian Model Inference 

Goal: Estimate 

 

 

Split this using Bayesian inference into 

 Step 1: Model Fitting 

 

 

 Step 2: Model Selection 

[Sturm et al., IJCAI’09] 
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 Different objects require different models 

 

 Our set of candidate models 

 Rigid model 

 Prismatic model 

 Revolute model 

 Gaussian process model 

Step 1: Model Fitting  
[Sturm et al., IJCAI’09] 
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Parametric Models 

 Noisy, outlier-corrupted data 

 Robust estimation (MLESAC) 

 Models are generative 

Prismatic model Revolute model 

[Sturm et al., IJCAI’09] 
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The Non-parametric Model 
[Sturm et al., IJCAI’09] 
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The Non-parametric Model 

 Articulated objects have few DOF 

 Articulated parts move on low-dimensional 
manifold 

 Recover manifold + learn transformation 

3D pose  
observations 

latent 
configurations 

Non-linear dimensionality reduction 
using locally linear embededing (LLE) 

Non-parametric regression 
using Gaussian Processes (GP) 

[Sturm et al., IJCAI’09] 
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 Four candidate models 

 

 

 

 More general models always fit 

 Simpler models are more robust 

Which model is the best? 
[Sturm et al., IJCAI’09] 
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Step 2: Model Selection 

 Bayesian theory: Compare model posteriors 

 

 
 

 

 This integral can be approximated using the 
Bayesian Information Criterion (BIC) 

 

data likelihood model complexity penalty 

[Sturm et al., IROS’10] 
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 Find best kinematic tree (no loops)  

 Model as a graph, use BIC as edge cost 

 Minimum spanning tree is optimal solution 

rigid 

prismatic 

revolute 

GP 

pedestral top drawer bottom drawer 

Inferring the Topology 
[Sturm et al., IJCAI’09] 
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 Find best kinematic tree (no loops)  

 Model as a graph, use BIC as edge cost 

 Minimum spanning tree is optimal solution 

Inferring the Topology 

rigid 

prismatic 

revolute 

GP 

top drawer bottom drawer pedestral 

[Sturm et al., IJCAI’09] 
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Experiment: Microwave Oven 

Input sequence 

[Sturm et al., IJCAI’09] 
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Microwave Oven: Learned Model 

Reprojection of 
Learned Model 

Graphical  
Model 

Kinematic 
Function 

[Sturm et al., IJCAI’09] 



Jürgen Sturm: Approaches to Probabilistic Model Learning for Manipulation Robots 

Office Pedestral: Learned Model 

Reprojection of Learned Model 

Learned Graphical Model 
Kinematic Function of 

Top Drawer 
Kinematic Function of 

Bottom Drawer 

[Sturm et al., IJCAI’09] 
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Closed Kinematic Chain 

 Approach can be generalized to arbitrary 
kinematic graphs (including loops) 

 Estimate the DoF of the system 

 Significantly increased complexity 

 

 

 

 

[Sturm et al., JAIR’11] 
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Operating Articulated Objects 

 Closed-loop model estimation and control 
(joint encoders) 

 Learn kinematic model during execution 

 Improved accuracy through repeated 
interactions  

[Sturm et al., IROS’10] 

Estimate 
kinematic 

model 

Generate 
next set 

point 

Observe 
trajectory 

Execute 
on robot 

Georgia Tech 



Jürgen Sturm: Approaches to Probabilistic Model Learning for Manipulation Robots 

Towards Autonomous Mapping 
of Articulated Objects 

 Visual perception + closed-loop model 
estimation and control 

 Store/retrieve models in the map 

[ICRA’12] 

Technical University of Munich 
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Towards Autonomous Mapping 
of Articulated Objects 

RoboEarth project (FP7): store/retrieve 
models in a world-wide data base, exchange 
with other robots 

Eindhoven University of Technology, Philips Innovation Services, University of Stuttgart, Swiss 
Federal Institute of Technology Zurich, University of Zaragoza, Technische Universität München 
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Conclusions 

 Integrated Bayesian framework for 
modeling articulated objects 

 Fully available as open-source 

 Significantly increases the flexibility of 
service robots in unstructured 
environments 

 Actively used by several independent 
research groups and research projects 
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PhD Thesis: “Approaches to 
Probabilistic Model Learning” 

 Chapter 3: Body schema learning 
[ICRA’08, RSS’08, JP’09, GWR’09] 

 Chapter 4+5: Articulated objects 
[IJCAI’09, ICRA’10,IROS’10, RSS’10,JAIR’11] 

 Chapter 6+7: Tactile sensing 
[IROS’09, IROS’10, TRO’11] 

 Chapter 8: Imitation learning 
[ICRA’09] 

 
3 journal articles, 14 conference and workshop 
papers, h-index 8, >160 citations 

this talk 
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Thank You For Your Attention! 

Many thanks go to: 

Wolfram Burgard, Kurt Konolige, Cyrill 
Stachniss, Christian Plagemann and all 
members of the AIS lab in Freiburg! 
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Future Work 
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Research Projects 

 First-MM (EU FP7) 
Learn flexible manipulation skills 

 RoboEarth (EU FP7) 
Exchange models between robots 

 A8 Project in SFB/TR8 (DFG) 
Apply to humanoid robots 

 TidyUp Robot Project (Willow Garage) 
Generalized mapping 
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Research Groups 

 U Freiburg, Autonomous Intelligent Systems 
[Cyrill Stachniss, Wolfram Burgard], Humanoids Lab [Maren Bennewitz] 

 TU Eindhoven, Mechanical Engineering 
[Rob Janssen, Marinus van de Molengraft] 

 TU Munich, Autonomous Intelligent Systems 
[Thomas Rühr, Dejan Pangercic, Michael Beetz] 

 ETH Zurich, Dynamic Systems and Control 
[Ramos de la Flor, Nico Hübel, Rafaello D’Andrea] 

 FZI Karlsruhe, Intelligent Systems and 
Product Engineering 
[Andreas Hermann, Rüdiger Dillmann] 

 Bonn-Rhine-Sieg University, b-it-bots 
[Jan Paulus, Nico Hochgeschwender, Gerhard Kraetzschmar] 

 Georgia Tech, Healthcare Robotics Lab 
[Advait Jain, Charlie Kemp] 
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Future Work: Flying Manipulation 

 Quadcopters 

 100g: smartphone or video camera(s) 

 500g: Kinect, gripper, dual core processor 

 2kg: more advanced sensors, whole laptop, 
actuated manipulator, carry heavier objects 

 Applications 

 3D mapping and navigation 

 Flying consumer cameras (ski, hiking,…) 

 Tidy up tasks (return empty beer bottles to crate) 
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Future Work: 3D Perception 

 3D tracking, localization and mapping 

 Dense methods 

 Convex optimization 

 3D reconstruction 

 Active perception (using robots) 

 Active segmentation 

 Visual navigation with quadcopters 

 Flying manipulation 

 Benchmarking 
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Body Schema Learning 
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Motivation 

Existing robot models are typically 

 specified (geometrically) in advance and the 

 parameters are calibrated manually 
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Experiments 



Evaluation: Forward Kinematics 

 Fast convergence (approx. 10-20 iterations) 

 High accuracy (higher than direct perception) 

 



Life-long Adaptation 
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Articulated Objects 



Related Work (1) 

 Door and door handle detection 

 Robust control 

 Door locations specified in map 

 Scripted turn and push motion 

 

[Meeussen, Wise, Glaser, Chitta, McGann, Mihelich, 
Marder-Eppstein, Muja, Eruhimov, Foote, Hsu, Rusu, Marthi, 

Bradski, Konolige, Gerkey, Berger, ICRA 2009] 
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Related Work (2) 

 Motion Capture and Video 

 2D/3D Feature Tracks 

 Recover stick figures 

 Learns graphical model 

[Ross, Tarlow and Zemel, IJCV 2010] 
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Related Work (3) 

 Manipulator + Camera 

 Interactive Perception 

 Tracks KLT-Features 

 Min-cut algorithm on feature graph 

 

[Katz and Brock, RSS 2008] 
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Process Model 

 Kinematic model 

 

 Configuration 

 

 True pose 

 

 Observed pose 
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Process Model for 2 parts 

 Kinematic model 

 

 Configuration 

 

 True poses 

 

 True transformation 

 

 Observed poses 
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Process Model for 3-chain 
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Process Model for 4-chain 



Examples 1/3 

fridge drawer 



Examples 2/3 

dishwasher .. and tray 



Examples 3/3 

water tap valve of a radiator 
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Model Clustering 

 Given two observed trajectories, should we 
select one or two models? 

 

 Bayesian model comparison 

Then: Learn single model 
(single set of parameters 
but might fit data worse) 

Else: Learn two models 
(double set of parameters 
but might fit data better) 

If 
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Exploiting Prior Information 

 Using prior information significantly improves 
prediction accuracy  
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Example: Desk Lamp 
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Estimate effective DOFs 

 Closed chain objects might have less DOFs 
than the sum of their links 

 

 

 

3 links 
3 DOF 

4 links 
1 DOF 
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Example: Open Kinematic Chain 
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Example: Closed Kinematic Chain 
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Evaluation of DOFs 
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Marker-less Perception 

 Artificial markers are not suitable for real-
world applications… 

 Can we learn the articulation models without 
using artificial markers? 

[ICRA’10] 
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Marker-less Perception 

 Detection and tracking of articulated objects 
in dense depth video 

 Our approach: Plane segmentation and 
iterative pose fitting 

[ICRA’10] 
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Marker-less Perception 

 Track detected objects 

 Learn articulation models from observed 
trajectories 

 

[ICRA’10] 
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Marker-less Perception 

 Track detected objects 

 Learn articulation models from observed 
trajectories 
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Tactile Sensing 
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Example Data 

 Robot grasps cup 

 

 

 

 Robot grasps pen 

left 
finger 

right 
finger 

left 
finger 

right 
finger 
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Bag-of-Features Approach 

 Learn a codebook, i.e., a histogram relating 
features with object classes: 

h o 
i 

Ã h o 
i 
+ e x p ( ¡ d i s t ( c 

i 
; z ) = l ) 
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Recognition Rates 

n data set recognition rate

21 all objects 84.4%

13 household objects 96.2%

8 industrial objects 58.0%

2 tennis balls 93.8%
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Gain of Active Perception 

 Significantly higher recognition rate 
(validated via t-test) 

 More expressed for industrial objects  
(more difficult)  

all objects industrial objects 
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Imitation Learning 



Problem Formulation 

 Given: 

 Multiple demonstrations of the same manipulative task by a 

human teacher 

 Wanted: 

 A generalizable reproduction of the skill by a robotic 

manipulator 
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Dynamic Bayes Network 
for Imitation Learning 

joint space 
constraints 

observation of 
arm configuration object-hand 

relations 

arm configuration 
in joint space 

observation of 
world state 

world state 
in task space 
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Dynamic Bayes Network 
for Imitation Learning 

… … 

… … 



Task 1: Pick & Place (1) 

 Human demonstration 

 

 

 

 

 

 

 

 Task: Pick cup and place on marker 



Task 1: Pick & Place (2) 

 Remove joint constraints 

 

 

 

 

 

 

 Task learned successfully 

 BUT: looks unnatural 



Task 1: Pick & Place (3) 

 With (learned) joint constraints 

 

 

 

 

 

 

 

 Human-like movement 



Task 1: Pick & Place (4) 

 Replace kinematic function 

 

 

 

 

 

 

 

 Task is reproduced well 



Task 1: Pick & Place (5) 

 Add constraint for obstacle avoidance 

 

 

 

 

 

 

 

 Task is reproduced well 



Task 2: Pouring (1) 

 Human demonstration 

 

 

 

 

 

 

 

 Extend state to include orientation 



Task 2: Pouring (2) 

 Reproduction 

 

 

 

 

 

 

 

 Task is well reproduced with 6D poses 



Task 3: Whiteboard Cleaning 

 Human demonstration 



Task 3: Whiteboard Cleaning 

 Robotic reproduction with obstacle 


