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Abstract. In this report we describe the algorithms implemented by the

Dutch Team in the Sony 4-Legged League. In particular, we describe

the new modules on the Aibo side (self-localization, role switching poli-
cies, vision) as well as some useful tools we created for the developer

side (storing binary snapshots, improved color table creation and perfor-
mance measurements). Our approach in the variable lighting challenge

is explained, which allows to compensate for a wide range of varying

lighting conditions. The range of lighting conditions during the chal-
lenge was too small to test our algorithm to the extreme, we expect

that with this algorithm we can play soccer both indoors and outdoors.
This component is still under ongoing development and we hope that

next year we can demonstrate fully autonomous self-configuration under

arbitrary lighting conditions.

1. Introduction

In the second year of participation of the Dutch Aibo Team we started with merging our 2004 code base and
the German code from 2004. Due to the quality of the German documentation [8] and code our ground for this
year’s improvements are in practice completely based on the German code release from 2004. This allowed
us to concentrate our resources on new developments (bearing in mind our small and constantly changing
team composition: 20 second-year undergraduates, 2 graduate students, no post-graduates or post-docs).

Outline The following gives a brief summary of the contents of this report: In section 2 you find our modifi-
cations and improvements for the soccer code of the modules which run on the Aibos. In section 3 we explain
the descriptions of the extensions we added to the developer debugging application (called RobotControl).
In section 4 you find the description of our approaches to master the technical challenges, especially the
variable lighting challenge in subsection 4.1. Finally we give a brief discussion in section 5 and end with an
outlook for next year’s participation and our ongoing research.
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2. Solutions for Playing Soccer

The mission at the RoboCup of the 4-legged robots is to play soccer. The German Team has split this
mission into several tasks. For each task different solutions can be invented. Each solution corresponds with
a module, and a number of modules form an information processing network that plays soccer. The design of
the Germans allows switching between modules that are solutions of the same task at runtime. We slightly
adapted many of the original modules to comply with the new rules, as illustrated in figure 1. We included
the new field dimensions and beacon positions, rebuilt the field lines lookup tables, implemented the new
game controller protocol and adjusted the behaviors.

Figure 1. Screenshot of the ’Module settings’ toolbar of RobotControl with the modules modified by the Dutch Team.

2.1. Dynamic Roles allocation

The original role switching policy was not robust: firstly, with the WLAN turned off the two attacking robots
ended up in the same behavioral state and kept playing in exactly the same manner, and as of then they
walked next to each other and pushed each other. Secondly, even with the WLAN turned on, critical roles
were not assigned uniquely and it also happened frequently that two robots were in striker mode where
they obstructed themselves mutually. Therefore we designed and implemented a new dynamic role allocation
module, which reduces the number of striker conflicts considerably.

Before the computation starts, a number of flags and variables are evaluated. Firstly, it is determined
whether or not the wireless link is working. The link is considered to be broken when for more than 5 seconds
there is no other team player broadcast received. Secondly, it is determined whether the player is on the
own field half or not. Thirdly, the estimated time to reach the ball is computed, also taking into account the
angles between the player, the ball and the opponent goal1.

1Because even if one player is closer to the ball than another but stands between the ball and the opponent goal it would

not be wise to assign him the striker role.
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Without WLAN Without an active wireless link the new policy encourages that the players try to stay in
their innate roles, but whenever the ball comes closer than a certain threshold, they become temporarily
striker. This is easy to implement for the second and fourth player (innate roles defensive and offensive
supporter) because they have distinguished places on the field, but player three may change from field halve
and should play wherever its support is required more. Therefore, player three has innate role defensive
supporter when playing on its own half, and offensive supporter when playing on the opponent’s half. Player
three leaves on the opponent’s half the initiative to player four, because this player only takes over the striker
role when the ball is close (1m), whereas player four already feels responsible when it sees the ball from
further away (2.5m). When the ball is kicked away, all players return to their innate role. This leads to a
balanced team play (at least less obstructions occur compared with the original policy).

With WLAN When the wireless link is functioning, roles can be assigned smarter. When a robot doesn’t see
the ball, it decides (on the basis of the transmitted robot poses of its teammates) whether it is the hindmost
player. If this is the case, it becomes the defensive supporter (meaning that the robot will walk back to the
own field half). Otherwise the offensive supporter role is assigned to it. It is now temporarily possible that
two robots have the offensive supporter role.

When, on the other hand, the ball is seen, each robot mentally assigns the striker role to the robot that
is closest to the ball (based on the estimated time to reach the ball). Then the hindmost player is assigned
the defensive supporter role and when there is another player remaining2, it is assigned the supporter role
(which probably makes it walk to the opponent’s field half).

2.2. Behaviors

We slightly adapted many of the original behaviors to comply with the new rules. The most radical modifi-
cation we like to mention is the rewritten goalkeeper behavior (see the red states in figure 2) and a new kick
(the smashKick).

We wrote an odometry test behavior that basically makes the robot walk 4m straight ahead and subse-
quently turn 180 degrees. By this means we discovered that almost all our robots had a (heavy) deviation
to the right when walking straight on, so we tried (but without success) to use the self-learning walking-
parameter engine of the German Team, then tried (and failed again) to write a manual odometry error
compensation. Finally we had no choice but to occasionally let the robot recover from bad odometry updates
(around every 10 seconds, depending on the situation) by adding additional re-localization phases to the
behaviors that, of course, cost expensive additional time while playing.

2.3. Self-localization

We started adapting the self-locator to the new rules (especially the new field size), which took us a long
time because of our unfamiliarity with the lower levels of the GT2004 code. With the aid of the Statistics
toolbar (described in section 3.1) we finally succeeded to have the module running.

During the debugging process several interesting new ideas came up, which now could be tested against
the original algorithm. Our first hypothesis was that the localization error would decrease when the estimated
distance to a landmark was used in the observation model. Our second hypothesis was that convergence
would be faster if multiple subsequent landmark percepts could be used in the resampling stage. Our third
hypothesis was that the precision would increase if the final pose estimate is checked against the odometry,
to prevent sudden jumps.

2In a four-player game there should of course always be one last player, but just as well it could be that it is currently

penalized and taken out of the game. So the question remains to which of the two remaining roles (offensive/defensive supporter)
you want to give priority. We chose to play defensive, always assigning the defensive supporter role first.
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Figure 2. Option playing-goalie implements the Dutch goal keeper behavior.

Distance in the Observation Model We included the estimated distance to the landmarks in the observation
model by calculating the quality qmeasured by the following Gaussian similarity formula:

qmeasured = s(distancemeasured,bearingmeasured,distanceexpected,bearingexpected) = exp−25(1−b)2d2
(1)

where d = 1 + |distanceexpected−distancemeasureddistanceexpected
| and b = | |bearingexpected−bearingmeasured|−ππ |.

This formula is equivalent with equation (3.29) from [8], when d = 1.4. The quality qmeasured of each
observation of a landmark is used to update the running estimate qualitylandmarks according to the equation
(3.33) from [8]. The probability pi of the particle i of the particle filter [2], representing a hypothesis of the
posterior robot pose, is calculated as the product of four independent quality estimates:

pi = qifieldlines · qiborder · qigoallines · qilandmarks (2)

The qiborder no longer is the running estimate of the quality of measurements of the white wall of previous
competitions, but of the measurements of the border outside the green field.

Landmark Flashback Buffer When the sight on the field is bad (for example due to bad calibration, people
running around, after a kidnap or while a game is running) it takes unnecessarily long time before the
particle filter converges to the right position. This is because of the stochastic nature of particle filtering:
whenever a landmark is detected all unlikely particles on the field are removed while likely particles are
duplicated. However, if there are no subsequent landmark percepts within a few seconds, the position is lost
again. A solution to this problem is to store seen landmarks and decrease their reliability in a few seconds.
We adjusted the parameter in such a way that roughly every landmark is used twice.
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So, instead of using only the current observation yt at time t, we maintain a small buffer for each type
of landmark, with the N latest observations yf and their corresponding time frames f . Each observation yf
has a probability of

p(t, f) = PerceptChange · Percept(t−f)
Decay (3)

to be used to update the running estimate qlandmarks. The constant PerceptChange = 0.15 prevents that
recent but not subsequent observations dominate the running estimate. The constant PerceptDecay = 0.99
takes care that an observation is forgotten after a few hundred frames.

Pure Odometry Parallel Filter Probably also because of the stochastic nature of the particle filter and wrong
perceptions the particle filter occasionally diverges and suddenly jumps around over the field. Although in
most cases the robot finds its location back within a second, this can lead to undesired behavior. Moreover,
these outliers can easily be detected because in such situations the computed robot-pose validity is extremely
low compared to earlier readings3. The validity of the robot pose is calculated with equation (3.38) from
[8]. Whenever the validity of the pure odometry filter drops below the validity of the particle filter it is
reinitialized to the robot pose and the validity of the particle filter (when everything is fine this is what
happens in almost every frame). When the validity of the pure odometry filter is better than the particle
filter, the own robot pose and validity are kept, although the latter drops to zero in seconds. Whichever filter
produces the robot pose with the bigger validity is chosen to supply this frame’s robot pose.

Results The original GT2004 module, adapted for the field size, achieved an average localization error of
21.3 cm and 8.27 degrees. The average kidnap recovery time was 4.97s (σ=4.45s).

Taking advantage of the distance information, the precision of the self-locator module increased to a 14.3
cm average error. The recovery time after a kidnap dropped down to 2.16s.

This flashback buffer led to an increased kidnap recovery speed, especially when seldomly visible land-
marks were detected. The kidnap recovery time dropped to 2.09s (without taking advantage of the earlier
mentioned new distance-to-landmark likelihood estimation), but only slightly decreased the average posi-
tional error: 17.3 cm.

With the odometry filtering turned on, we achieved the best average error of only 12.8 cm and 4.64
degrees.

Using all three extensions to the original algorithm simultaneously, both the precision and recovery time
do not further increase; we obtain an average error of 13.5 cm4 and 5.02 degrees. The average kidnap recovery
time was around 2.14s with a standard deviation of 0.71s. This means that with these modifications we
achieved a very stable self-localization, without impairing the reaction time or quality to kidnaps.

In the appendix a table with the actual measurements of these experiments can be found.

3. Tool development

On the developer side we extended the German RobotControl application. New components could easily be
added to this framework because of its remarkably modular design. The benefit of this approach, compared

3However, this could of course also be the sign of a kidnap, but keep in mind that the particle filter needs some seconds to

recover anyway and become stable, so it’s after all not so bad to believe for a short period of time in the “blindly” updated
position until switching in one step to the new position.

4The attentive reader notices that odometry filtering alone already achieved a lower average error. This is unfortunately due

to occasional noise in the measurement procedure (e.g., sometimes the robot recognizes slightly more landmarks than in another
run). More reliable numbers can be gained by repeating the measurements several times.
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to many separated PC-tools, is that all components may then directly communicate with the Aibos both on
the field or the simulated in RobotControl or even only listen to the playback of earlier-recorded logfiles.

Although RobotControl already incorporates a lot of tools, new developments on Aibo modules can only
take place in a controlled way when a corresponding developer window is created to log the progress. We
found it useful to add a few tools to extend its functionality.

3.1. Statistics Toolbar

Our biggest problem this year was the poorly functioning self-locator module on the Aibos. Partly this was
due to the transfer of our code after a month’s effort from one student project to the next. The first project
tea, [5] adapted the source code for the new field dimensions at the beginning of this year, but was not
satisfied with the self-localization results and indicated missing dependencies. Unfortunately, the search for
these dependencies progressed slowly, because the code was functioning at that moment, but due to the
lack of measurement tools it was unclear how poorly. Improvements on the code weren’t progressing, until
the creation of the tool for measuring and testing the performance of the image processor (producing the
landmark percepts) and the self-locator module that integrates them into the filtered estimation of the robot
pose.

We have created a statistics toolbar that reads the position of the Aibo supplied by an external source.
The statistics toolbar is independent of the source, so this could be originating from any reference system.
This can be, for example, the robot poses supplied by the simulator (a.k.a. the oracle), or pre-defined points
distributed over the field.

The German Universities have already build reference systems that can be used as independent sources,
but details are scarcely given. For instance, [7] relies on a laser range finder that detects a pipe attached to
the Aibo’s back to reproduce the experiments described in [4]. At Darmstadt [1] a ceiling camera is used that
detects and tracks the positions of multiple robots simultaneously. Both methods rely on the availability of
additional hardware and have probably never been tested outside the laboratories where they were developed.
A third possibility is to use a special image processor and self-locator that can determine the robot pose using
a check board pattern on the wall, but constantly switching modules is not a neat solution and moreover,
the check board can only be seen from a restricted area on the field [3].

The statistics toolbar can use any reference system to test the performance of the perception and the
localization. Good results have been gained with a simple set of 10 fixed locations on the field, as illustrated
in figure 3. The robot is moved manually from position to position once every 60 seconds, while the statistics
toolbar does its analysis.

With every message from the image processor the statistics toolbar calculates the set of landmarks
(see figure 4) that the robot should see (completely visible within the calculated viewing area) as well as
landmarks, which are definitely invisible (lie completely outside the viewing area). The viewing area is
generated by looking at a rectangle with a dimension slightly bigger than the landmark. This rectangle is
placed orthogonal to the viewing direction, at the location that the reference system indicates. This procedure
is equivalent with the generation of the area with grids of scan lines for the perception modules (see Section
3.2.1 in [8].

This information is compared to the actual perceived landmarks and counters are calculated to track
the number of true positives, true negatives, false positives and false negatives. Receiving perceptual and
positional information packages from the robots is by nature completely asynchronous, meaning that we can
never assume that both perceptual and positional information arrive at the same point in time. Therefore
we developed a ring buffer that primarily holds all incoming information for several seconds. Whenever the
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Figure 3. 10 measurement positions on the field.

dialog bar is requested to repaint (more or less once in a second), a computationally cheap update algorithm
spreads information5 from the oldest (in the meantime) modified frame to the most recent one.

The amount of false positives is dangerous for the performance of the self-locator, while the ratio of true
positives to the sum of true positives and false negatives gives an indication of the landmark recognition rate
of the image processor.

On our last official test before the championship with the 10 pre-defined points we achieved the following
performance output. The measurements at each point started after a 20 seconds kidnap recovery time.

Flags:
precision visible flags: 26% (80 FN : 29 TP)
precision invisible flags: 99% (1 FP : 1566 TN)

Yellow goal:
precision visible goals: 67% (11 FN : 23 TP)
precision invisible goals 99% (2 FP : 389 TN)

Blue goal:
precision visible goals: 75% (9 FN : 27 TP)
precision invisible goals 99% (2 FP : 374 TN)

Selflocator:
average error: 63.4655 mm, 2.93795 deg

While the flag recognition rate is rather low (probably due to the blur of the fast moving camera in
combination with the small size of distant flags), goals are recognized at a high rate (probably because of
their big size and easy structure). Fortunately the false positive rate is extremely low.

5Camera matrices, true position of the robot, statistic counters (capturing information like true/false positives/negatives).
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Figure 4. Screenshot of the statistics toolbar.

The self-locator module determined the robot’s position within a perfect range around the true position
(6.35 cm and 2.94 degree average error in localization). Tests after the championship, as shown in the
appendix, could not reproduce this level of accuracy, but are acceptable considering the manual procedure.

3.2. Color table creation

The original color table creation tool required, apart from a good instinct and a calm hand, a lot of patience
until the color-to-color class lookup table consisting of 643 elements was filled in sufficiently correctly. Even
then, the produced color tables were prone to error because some regions in the color table were constantly
relabeled.

To reduce the need of a calm hand an automatic flood fill algorithm was implemented.
To overcome the relabeling problem, the new toolbar keeps track of the weight of all color class assign-

ments per entry (color cube) in the table. The weight is computed in such a way that in the end every
mouse click of the user gets the same weight, no matter how big the selected (and added) region of pixels
is. This has the advantage that a click on the (relatively) small orange ball counts as much as a click on the
(relatively) big green carpet. This natural approach keeps the influence of a color class in the color space
linearly balanced on the amount of user interaction (regarding this color class). The difference between these
approaches is illustrated in figure 5.

In figure 5 first a pixel on the orange ball is selected. The flood fill algorithm searches automatically for
comparable pixels in the neighborhood. A round region is found, together with some noise in the corners of
the yellow goal. The user wants to correct this, and selects a yellow pixel in the goal as typical ‘yellow’. The
automatic flood fill finds many more comparable pixels this time. For the unweighted algorithm this means
that the example of the large yellow area overrules the small orange example, which results in assigning
YellowGoal to the highlights on top of the ball. With the weighted algorithm the ball keeps its color class
assignment.

In the appendix a quick tutorial on how to create a color table can be found.
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Figure 5. Resulting color segmentation using unweighted (left) and weighted (right) color class assignment, after two assignments

(first the small orange region, then the big yellow region). The green region is unassigned.

3.3. Binary Image Deployment

RobotControl allows memorystick creation with the current Aibo binaries in the /build/MS/ path of the
project tree. Apart from the fact that this procedure is very time-consuming (almost two minutes per
memorystick, plus the shut-down and start-up time of an Aibo) it only allows the creation of the most
current binaries of the project tree.

The Binary Image Deployment dialog solves these problems: it smartly checks whether the files which
need to be copied are different from those on the memorystick (leading to copy times below 10s) and even
allows for software and configuration to be sent wirelessly (via the FTP protocol) which in turn speeds up the
deployment process enormously. Moreover, it is possible to save binary images in a single .tgz archive file
that can be stored and conserves in this way the state of development. One binary image roughly occupies
4MB and can easily be sent via e-mail or stored on project sites.

This tool greatly facilitated the co-operation between the different Aibo projects spread out over the
Netherlands.

4. Technical challenges

We signed up for participation in all three technical challenges.
However, the SLAM challenge module couldn’t be finished in time (and still hasn’t been). For the

open challenge we wanted to show a predator-prey demonstration running on the Aibos, but we failed to
produce working memorysticks in Osaka (undetected installation problems with the Tekkotsu framework).
The variable lighting code was prepared and tested thoroughly, however an uneven floor and extremely bad
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Figure 6. Screenshot of the deployment dialog.

luck made the ball roll - already after the first shot of our robot - around in a circle and finally, under the
back of the (sleeping) defending robot, where our robot couldn’t grab it any more.

Despite this unfortunate situation, our approach works under a huge amount of lighting conditions, is
very simple, computationally cheap and even allows a whole soccer game being played under varying lighting
conditions (such as necessary for an outdoor demonstration), therefore we want to explain it below in more
detail.

4.1. Variable Lighting

The vision module segments incoming images using the color-to-color class lookup table. Inspired by the
multicolor table approach by Mantz [6] and Slamet [9], the Dutch Aibo Team came with the idea to handle
varying lighting conditions with color segmentation. The main principle is to supply the robot with multiple
color tables and a module that selects the most appropriate one both in a stable way and with low latency.
Along with the switching of color tables, the camera settings can subsequently also be adapted, letting the
Aibo change the shutter speed, white balance and the camera gain factor.

The question remains how to detect that the current color table / camera settings combination is at a
certain moment not appropriate any more. We chose to ground this decision on a fast and outlier-protected
average over the Y-channel of the image (basically the brightness)6. Averaging is needed, because there are
large natural fluctuations in the brightness for a robot playing soccer. Although in most cases the biggest
part of an image consists of the green carpet and the background, it might happen that the robot is currently
handling the ball or running into obstacles, of which it might (not) be aware of. We therefore decided to use
a double filtering both in the spatial (per image) and temporal (over multiple images) dimension to obtain
stable readings7.

For the spatial dimension, we use a pixel grid8 spread uniformly over the input image. From the selected
pixels, we compute the median (using a histogram) and feed it into a sliding average filter over the last
frames9. This produces fairly stable readings, as can be seen in figure 7.

6This does not take into account the effects of a changed white balance, but we think that for the moment it is safe to assume
that the robot (and field) is not suddenly kidnapped from an outdoor to indoor environment or vice versa.

7As stable as possible. Of course the robot might be mistaken when the sight is obstructed for a long time. However, as long

as it is stuck, there is probably no well-suited color table/camera-settings combination anyway.
8In Osaka: 10x10 grid points.
9In Osaka: 5 frames.
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Figure 7. Brightness filtering under variable lighting conditions.

To create figure 7, we changed the lighting conditions quite drastically for five times, as indicated at
the top of the figure. At the center of the image the brightness is indicated. The yellow line represents
the average brightness per frame. The orange line indicates the median average brightness per frame. The
jumps correspond to the head movements of the robot (head sweep, robot is searching for the ball). The
sliding average filter stabilizes these readings very well. The horizontal bars on the right give the (estimated)
confidence range of different color tables.

Whenever the sliding average leaves a specific threshold, the color tables are adapted. In reality also the
camera settings (gain, shutterspeed) are adjusted to keep the brightness in a convertible range between 50
and 100, but in figure 7 the camera settings are kept constant to illustrate our concept.

To make this possible, the confidence values for a given color table/camera-setting combination have
to be estimated. Therefore, after building a color table under a certain lighting condition, we let the robot
play with the ball for a short time, while it collects the filtered values in a second histogram. We now can
compute a certain quantile10 (extending from the center of the probability mass) that we consider to be the
validity range of the newly produced color table/camera-settings. This is supervised learning.

After having done this for several conditions (darker and lighter), we end up with a complete color table
selection table. It turned out that the performance is somewhat better when the validity ranges are tuned
manually afterwards, for example if brightness averages drop below 30 this means noisy images, while if the
average rises above 100 the images might contain ugly highlights and moreover it would be recommendable
anyway to switch to a higher shutter speed that would result in clearer images. Whenever the robot detects
that the sliding average leaves the validity range at the bottom or at the top, it switches (if possible) one
setting downwards or upwards respectively. After that, a counter is initialized to prevent switching again
before the sliding average filter is completely flushed11.

In Osaka we used 5 different color tables; 2 of them for darker lighting conditions (we produced them by
dimming half/all of the field lamps) and 2 of them for brighter conditions. As we were not allowed to record
logfiles with the additional lights turned on, we recorded some logfiles under normal lighting with decreased

10In Osaka: 90%.
11With our settings in Osaka, this still allowed up to 6 switches per second.
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shutter speeds that produced seemingly brighter circumstances. Below you see the configuration file we used
for the challenge:

# variable lighting config file
#
# format:
# <name> <YAvgRangeFrom> <YAvgRangeTo> ..
# .. <WhiteBalance> <Gain> <ShutterSpeed> <ColorTable>
#
# coltables 4/5 are estimated, therefore the confusing names
# (the names stand for the camera settings while recording)
#
# darkest to brightest
1/complete/high/slow 50 85 indoor high slow col1.c64
2/half/high/mid 50 85 indoor high mid col2.c64
3/normal/high/fast 35 70 indoor high fast col3.c64
4/normal/high/mid 60 90 indoor high fast col4.c64
5/normal/medium/fast 35 70 indoor medium fast col5.c64

Apart from the unlucky demonstration itself, we believe (and will demonstrate) that with this algorithm
it is possible to play outdoor with changing sunlight and weather conditions. Furthermore, it allows us to
do so without expensive spotlights and eventually even remove the window shades in our robot laboratory.

Continuing on this trajectory, a master student will henceforth examine self-calibrating possibilities and
implement one. The complex furnishing of a robot laboratory (and actually most places) should make special
color-tagged landmarks superfluous, so we hope that some camera sweeps from given positions on the field
will be sufficient for precise map building. Even if the processing power of the Aibos is limited, the whole
process has only to be done once at the beginning and maybe even computations could be split up and
solved by its teammates.

5. Conclusions and discussion

The main problem of the Dutch Aibo Team, which is in its second year of existence, is its insufficient
manpower, unaligned research directions of its supporting institutes and a missing long-term perspective for
its future. As the main overview is held and main work is accomplished by (short-term) student projects,
all experience and skills get lost for the Dutch Aibo team as regularly as its members change. These issues
have been recognized, and initiatives to incorporate this effort in long-term research programs on a National
and European scale have been implemented.

However, when considering the small team size we are completely satisfied with the results we achieved
this year at the RoboCup World Championship 2005. We left the tournament after several fair games in
the intermediate preliminary rounds and took a lot of interesting inspirations back home. Although we have
to acknowledge that part of our success surely was due to the excellent basis we had from the German
Team code, nevertheless we think we gained a lot of experience, built up RoboCup competition skills and
established in many places important links to other scientists, research groups and communities.
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Master’s thesis, Technische Universität Darmstadt, 2005.

[2] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo in Practice. Springer Verlag, New York, 2001.
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Appendix: Self-Localization Results

This table describes the specific measurements 12 underlying our conclusions regarding the precision of our
self-localization in section 2.3.

activated new features:
all off flashback distance odometry all on

average localization error: 213 mm 173 mm 143 mm 128 mm 135 mm
8.27 deg 5.77 deg 5.88 deg 4.65 deg 5.03 deg

recovery time at position:
inside yellow goal 1.0 s 1.8 s 2.8 s 0.6 s 0.5 s
left corner penalty area (red team) 2.1 s 3.1 s 2.7 s 2.9 s 3.1 s
right corner penalty area (red team) 3.1 s 1.3 s 0.8 s 1.0 s 1.9 s
left re-entry point 14.1 s 4.5 s 1.9 s 3.3 s 3.0 s
red striker kickoff position 2.0 s 1.1 s 0.9 s 2.0 s 2.2 s
right re-entry point 8.4 s 3.2 s 3.0 s 2.1 s 2.5 s
blue striker kickoff position 3.4 s 1.9 s 3.0 s 2.1 s 2.1 s
right corner penalty area (blue team) 3.6 s 2.0 s 1.7 s 2.5 s 2.2 s
left corner penalty area (blue team) 10.5 s 1.3 s 2.7 s 2.0 s 1.8 s
inside blue goal 1.5 s 0.7 s 2.1 s 1.3 s 2.1 s

recovery time average: 4.97 s 2.09 s 2.16 s 1.98 s 2.14 s
recovery time std deviation: 4.45 s 1.17 s 0.82 s 0.83 s 0.72 s

12This result is the predecessors of the measurements presented in [10]. These measurements were recorded by direct commu-
nication with the Aibo on the field, which means slightly different circumstances for each run. A more fair comparison between

the algorithms can be made with the playback of a recorded logfile, as shown in [10].
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Appendix: Manuals

HOWTO use the Software Deployment Tool

In this part of the appendix you will learn how to set up RobotControl when you use it for the first time,
write your first memory stick, get your Aibo up and running and finally connect to it wireless.

Figure 8. Screenshot of the deployment dialog.

Firstly, you have to create a new WLAN configuration (click on the “add connection” symbol in the
WLAN toolbar. Give it a name, and enter the IPs of the robot(s), as well as the ESSID, netmask, optionally
the WEP key, WLAN channel and set the AP mode to 1 (infrastructure only mode). Then close the dialog
with the OK button.

Then click on “Deploy Software”. Think about which robot you’d like to have (red or blue, player 1
goalkeeper, player 2 defensive supporter, player 3 and 4 offensive supporter). Aiboname and Stickname need
not to be correct, but be sure to select an existing binary image and a colortable for your stick. Also keep
in mind that the memory stick will be set up with the IP address corresponding to the player number) you
entered in the WLAN dialog.

Now click on the corresponding “stick” button - et voilà! Plug the memorystick in the Aibo and turn it
on. After a few seconds, the Aibo should get up. Now check in the WLAN dialog the “connect” box, then
click on “Connect” in the WLAN toolbar. The Aibo should reply with its name, battery state etc. Now you
can issue further commands by the various toolbars, for example, bring the robot in the “ready” state by
clicking on the “ready” symbol in the Game toolbar.

HOWTO Record a logfile and make a colortable

Set up the wireless settings (the “Edit and Copy” button) in RobotControl 13, check the connect box, then
click on ok. Open the “Deployment Dialog”, select the correct memorystick drive letter, select a debug binary
image for the corresponding robot and write it to the stick. Close the dialog. Start the Aibo, then try to
connect.

Select in the debug toolbar the SendJPEGImage key, select “send every n msec”, enter something such
as 1000 in the text field, and press send. Now you should receive images from the robot. Enable recording in

13Especially IP, wireless SSID and WEP key.
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the logfile toolbar. Move the robot around the field, show it every flag from different directions and distances.
Show it the goals, the lines and the ball, also in combination with red and blue robots. Try to record around
100-200 images. Disconnect from the robot, save the logfile and shut-down the robot.

Figure 9. Screenshot of the colortable64 dialog.

Now open the colortable toolbox and load an existing colortable (if you have one), that provides you
with a head start. Now click in the middle of color planes such as the yellow region of the flags and goals, or
the white stripes etc. If the automatic floodfill doesn’t select the object well, reload the image in the logfile
toolbar and try again with a changed color distance threshold. You can either select the assigned color class
manually or let the floodfill select the class for you, then the colorclass which occurs the most in the object
gets the polygon. With the right mouse button you commit the selected pixels to the color matrix and color
table. After a few images, the colortable should be good enough to classify most pixels correctly. After that,
walk through the rest of the logfile and check whether everything is classified correctly, otherwise add pixels
again. When a simulated robot is enabled, you can see how well it already detects landmarks, lines and the
ball in the image viewer.

Finally, don’t forget to save the colortable in the /Deployment/Colortables/ folder; then they become
available in the deployment dialog. You can also save the underlying complete matrix for later extensions (but keep
in mind that they weigh around 15MB on your harddisk).

HOWTO use the Statistics Toolbar

In this section we give a brief introduction to the Statistics Toolbar. You will learn how to measure the performance
of the image processors as well as of the selflocator modules.
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Figure 10. Screenshot of the statistics toolbar.

As the statistics toolbar knows the robot position and orientation, it calculates which landmarks should be fully
visible from the current pose, and which are definitely not. A visible (invisible) landmark is indicated by a green
(grey) background in the corresponding frame column. When the robot reports a seen landmark, a circle is painted at
the corresponding frame column/landmark row. A red exclamation mark indicates a vision mismatch (either because
the robot sees an actually invisible landmark or doesn’t see a visible landmark). This serves also as the basis for
the calculation of the true positives (correctly seen landmarks), true negatives (correctly not seen landmarks because
they are invisible) as well as the error counts (the false positives/negatives). The selflocator analyzer of the Statistics
Toolbar computes the distance of the true position to the robot’s estimate and aggregates this in an average error
estimate. Whenever the error is smaller than the threshold (default 20 cm), this is indicated by a green (otherwise red)
circle in the corresponding frame column. At the rightmost column you find summarized counters for the true/false
positives/negatives as well as percentages of the overall performance per landmark and localization.

In the simulator, using the oracle as position source

The easiest way to get a feeling for the use of the statistics toolbar is by running the simulator. Activate single robot
(for example red 2) in the simulator toolbar, check “send Oracle”, reset and then start the simulator. You should
now see the messages being processed by the Statistics toolbar. The columns represent a single frame (on the top
you can see the frame number); the first row contains the information about the selflocator, and the next ones about
the various landmarks. Click on a single cell to get some additional information about the event, like the estimated
and true position (of the robot/landmark), the (average) error, the state of visibility.

In the real world, using the test parcours

If you want to test your modules in the real world, you have three possibilities. The first posibility is to directly enter
the robot’s position manually in absolute field coordinates (in mm and degrees). Connect to your robot, place it on
the selected spot, make it send landmark percepts (sendPercepts debug key) and its robot pose (sendWorldState)
every 300ms. Now you should see how the robot performs at this location. Of course, you want to test the overall
performance, so one spot is not enough. This brings us to possibility number two. We defined ten points on the field,
with high relevance for the image processor and selflocator. The toolbar can guide you and the robot automatically
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around the field. Set up everything as before, and additionally select in the “Xabsl2 monitor and tester” the “walk-
slam-route” option (activate the “to physical robot” checkbox). The idea is that the robot is placed on the ten
different positions for one minute each. To help you get the timing right, both the toolbar as well as the robot can
give you exact indications what to do when. To get started, you have to synchronize the robot with RobotControl.
Therefore, click simultaneously on the “activate timer” button and the button on the Aibo’s back. In the toolbar, a
message appears (with a big font, good to read): “Position 1: yellow goal, inside”. In the mean time the robot will
have lowered its head and is looking to the ground. Now place the robot at the indicated position. In the Statistics
Toolbar, you should see a timer counting down 20 seconds before the true recording for this position starts. After this
period, the robot raises its head and starts localizing for 40s. As soon as the selflocalization error drops below the
threshold for the first time, the kidnap recovery time is recorded and written to the console. When the 40 seconds
are over, the robot lowers its head again (and RobotControl produces a beep sound) meaning that it should be
transported to the next position. After the whole sequence of 10 positions is completed, a brief textual summary on
the image processor and selflocator performance is written to the console of RobotControl.

Last and a bit more tricky is the third possibility, namely to completely trust on the robot’s own localization
capabilities. This allows you test the performance during a real game, and to estimate the influence of the image
processor module on the selflocator. The third possibility basically means that now it assumed that the robot is always
right about his own position estimate (which is definitely not always the case), and generate with this assumption
the counters of true/false positives/negatives per landmark for the image processor.


