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Abstract— In this paper, we present a novel approach that
enables a robot to efficiently learn to clean unknown surfaces.
We model the cleaning task as a Markov decision problem
(MDP) where the state transition model is unknown and needs
to be estimated. Using our method, a robot learns this transition
model by observing the outcomes of its actions. At the same
time, the robot exploits this learned model to generate paths
that favor those parts of the surface that the robot can clean.
In experiments carried out with a real mobile manipulation
robot, we demonstrate that our approach allows robots to clean
surfaces efficiently.

I. INTRODUCTION

Cleaning services are envisioned to be one of the most
relevant applications of mobile service robots in the near
future. However, most of the cleaning strategies currently
implemented in service robots are not very efficient. For
example, the Roomba robot from iRobot cleans a room by
random movements. Whereas such an approach guarantees
complete coverage as time goes to infinity, it is clearly
suboptimal compared to systematic coverage strategies. One
typical example of the latter approach is the Mint robot from
Evolution Robotics which uses visual markers for global
localization and which allow the robot to mostly visit every
location exactly once. However, some of these regions may
not be dirty and thus do not require cleaning while other
spots might even require multiple visits. These limitations
can be overcome by methods that enable a robot to observe
the outcome of its actions in order to learn a more efficient
cleaning strategy that take into account sensor data.

We propose a novel approach that allows a service robot to
efficiently clean a surface. It achieves this by learning which
features correspond to dirt and which correspond to a clean
surface. The robot divides the surface into a grid of cells,
and discretizes the color of each cell in the grid into a small
set of discrete color classes. The state of all cells together
with the position of the tool forms the state space of our
approach. In each time step, the robot needs to decide which
action to carry out. An action is to move to any location
on the surface and to clean it. After each action, the robot
observes whether the state of the current cell has changed as
a result of cleaning. Given this representation in terms of the
states, actions, and observations, we phrase the cleaning task
as a Markov decision problem (MDP). To be fully defined,
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Fig. 1: Experimental setup. The PR2 cleans a table with a
vacuum cleaner. Instead of cleaning the whole table, the
robot observes the outcome of its actions, learns which
features correspond to dirt, and cleans these regions.

an MDP requires additionally an observation model that
maps the input images to (discrete) states and the transition
model that describes the effects of the robot’s actions on
the state variable. In contrast to existing approaches, we do
neither require the observation nor the transition model to be
specified beforehand, i.e., to know which cells are dirty and
which are clean. In this paper, we show how the robot can
bootstrap these models autonomously by experimentation.

In our concrete scenario, we consider a manipulation robot
which is given the task to clean the surface of a table. Our
robot detects the table in the point cloud obtained from a
tilting laser range finder. After the pose and dimension of the
table have been determined, the robot takes a color image of
the table and divides the table surface into a grid. Based on
the color of each grid cell, the robot assigns a discrete class
label to each cell. These class assignments of cells to color
classes (together with the position of the robot’s end-effector)
represent the state of the system. In our experimental setup
(see Figure 1), the robot uses a vacuum cleaner that it holds
in its end-effector and that it can move across the table. In
each time step, the robot can move the end-effector to one
of the grid cells. By moving its end-effector over the table
and watching for changes in the table state, the robot learns
which class labels indicate dirt that can be removed by the
robot. By exploiting this knowledge, the robot seeks for the
path that maximizes the effects of cleaning. In experiments
carried out on a real manipulation robot, we demonstrate



that our approach allows a manipulation robot to clean a
table efficiently and, additionally, can verify the success of
cleaning.

II. RELATED WORK

For the specific task of fully covering a known surface, the
coverage problem can be solved by standard path planning
algorithms. In general, the term coverage path planning
refers to the problem where all nodes in a graph have are
connected and where the goal is to find a path that minimizes
some cost measure [9].

Most of the approaches for coverage assume that the en-
vironment is known and seek the shortest path that traverses
each location once. For general environments this problem
corresponds to the traveling salesman problem (TSP) . How-
ever, finding the optimal solution is well-known to be NP-
hard. Therefore, practical solutions use efficient approxima-
tions to reduce the problem size. Gabriely et. al [5], for
example, decompose the surface into a grid and suggest
different coverage strategies based on spanning trees. Other
approaches use a decomposition into non-overlapping cells
of different shapes. Latombe, for example, uses a trapezoidal
decomposition [8]. Another approach is the Boustrophedon
cellular decomposition [2] which divides the free space
into cells which can be covered with vertical back and
forth motions that can be connected across the cells. Huang
et al. [7] use this decomposition and compute an optimal
coverage path by minimizing the number of turns of the
robot. Recently, Mannadiar and Rekleitis [10] prosposed a
graph structure based on the Boustrophedon cellular decom-
position and showed that a complete minimal path through
this graph can be computed in polynomial time. In contrast to
these approaches, we are not interested in covering the entire
surface. Instead, we seek for the path that maximizes the
cleaning performance, i.e., that specifically covers those parts
of the surface that the robot can actually clean. Additionally,
most previous approaches assume that traversing a cell corre-
sponds to cleaning it – and thus in their current form, neither
take advantage of sensor readings during path execution.
Our approach, however, also considers areas already covered
because the robot continuously observes the state of the
surface. Thus, robots using our approach can traverse and
clean a cell more than once if necessary.

In the area of surface cleaning with a manipulation robot,
Urbanek et al. [14] learn low-level motor control of during
wiping. They propose learn the parameters of an oscillator
from human demonstrations and demonstrate that their sys-
tem can learn and reproduce different wiping styles, e.g.,
zigzag or roundish movements from expert demonstrations.
Eppner et al. [3] present an approach that enables a robot
to learn generalized task descriptions based on imitation
learning. Using their approach, a robot can learn to clean
various white boards by imitating a human. However, the
robot cannot substantially modify the path during reproduc-
tion (such as, adding more way points, or changing their
ordering while cleaning) and the robot does not observe the
state of the board. In contrast to that, our approach observes

the state, reacts on it, and allows the robot to recognize that
the surface has been successfully cleaned.

Describing effects of actions on the world state has been
seen recent interest in the area of affordance learning. Sahai
et. al [13] for example, use a robot to estimate which
tools are suitable for writing on different materials. In their
work, the robot learns that a marker writes on nearly all
materials while a PVC tube can only be used to write in a
bowl filled with beans and rice. Metta et al. [11] propose
an approach that allows a robot to learn a categorization
for objects as rollable and unrollable. Griffith et al. [6]
also categorize objects based on movement pattern resulting
from the interaction with the object and learn a model to
generalize the learned categories to new objects. For mobile
robot navigation Frank et al. [4] learn models of deformable
objects by interacting with them and show that navigation
task can be performed more efficiently considering the cost
of deformation. Ziebart et al. [15] model path planning as an
MDP where they assume that the reward function is a linear
combination of the features of the environment. Based on the
maximum entropy model, they use Inverse Reinforcement
Learning to estimate the corresponding weight for each
feature from observed trajectories. This enables them to
predict, for example, the chosen trajectories of pedestrians or
taxi drivers. Our approach describes the effect of the actions
of the robot as the transition model of an MDP and updates
the transition model while performing the task.

III. APPROACH

To solve the task of cleaning the surface of a table and
to estimate which class labels correspond to dirt, we first
formulate the problem as a MDP. Second, we show how the
current state of the table can be observed and knowledge
about the class labels can be obtained. Third, we show how
this information can be used to select the next best action
and to generate efficient cleaning paths.

A. Problem Formulation

We model the cleaning task as an MDP. An MDP is
generally defined as the tuple

(S,A,P(s′|s,a),R(s,a,s′)) (1)

where S refers to the set of states and A to the set of actions.
P(s′|s,a) refers to the transition function for getting to state
s′ when taking action a in state s and R(s,a,s′) to the reward
function that assigns a reward to action a that is carried out
in state s and that leads to state s′. Applying this definition
to the cleaning task, we define the set of states

S = {s1, . . . ,sn,x} (2)

where s1, . . . ,sn ∈{1, . . . ,k} encode the state of the individual
grid cells of the workspace. Further, x ∈ {1, . . . ,n} encodes
the position of the robot’s tool on the workspace. This results
in |S|= kn×n different states, where k refers to the number
of classes in which a cell can be in and n to the number
of cells. The set of actions A is defined as moving the tool
to one of the n cells of the surface and cleaning it, i.e., we



consider |A|= n different actions from which the robot has
choose in each time step. The transition function P(s′ | s,a)
consists of two parts: The movement of the tool and the
change of the workspace. We assume the movement of the
tool to be deterministic. Thus, we always reach the desired
position in the workspace, i.e., x′← a. However, the outcome
of the cleaning action on the state of the current cell is not
deterministic and initially not known by the robot.

We define the reward function R(s,a,s′) such that the robot
gets a reward for every change it accomplishes in the table
state, i.e., we assume that change in the table states is an
indicator of successful cleaning, i.e.,

Rclean(s,a,s′) =
{

1 if sa 6= s′a
0 otherwise (3)

Further, we penalize the distance into account that the robot
has to travel to reach cell a given its current position, i.e.,

Rtravel(s,a,s′) =−|x−a| , (4)

Using these two components, we define the reward function
as

R(s,a,s′) = αRclean(s,a,s′)+(1−α)Rtravel(s,a,s′), (5)

where α is a weighting factor that trades of cleaning versus
travel distance. However, the robot cannot know whether
cleaning a particular cell will lead to a change, i.e., the
successor state s′, or, more specifically, its a-th component s′a
corresponding to the state of cell a, is unknown. Therefore,
the robot can only compute the expected reward of an action
a using its current estimate of the transition function and the
noisy (and thus probabilistic) observation of the cell state sa,
i.e.,

E[R(s,a,s′)] = α

k

∑
j=1

P(s′a 6= j | sa = j,a)P(sa = j) (6)

− (1−α) |x−a| ,

where P(sa = j) corresponds to the probability observed
from the camera image that cell sa is assigned to color class
j. Further, P(s′a 6= j | sa = j,a) expresses the probability that
action a carried out in a cell assigned to color class j leads
to a change of this color class, i.e., that cleaning this cell is
successful.

Given the reward function, the robot can now compute the
expected future reward (or value) of a state s as

V (s) = max
a

{
∑
s′

P(s′ | s,a)
(
E[R(s,a,s′)]+ γV (s′)

)}
. (7)

Here, γ is the so-called discount factor and V (s) can effi-
ciently be computed using value iteration. Using V (s), the
optimal policy (and thus the best action that the robot can
choose in state s) is given by

π(s) := argmax
a

{
∑
s′

P(s′ | s,a)
(
E[R(s,a,s′)]+ γV (s′)

)}
.

(8)

To summarize, in each time step, the robot observes the
current state s, computes V (s), and executes action π(s)
given by the optimal policy.

B. Perception

To determine the workspace for our approach, the robot
acquires 3D point clouds as well as calibrated colored camera
images. The 3D scans are obtained by integrating several 2D
scans from a tilting laser over time. In detail, we carry out
the following four steps to determine the states of the table
cells s1, . . . ,sn:

1) To detect the table, we extract the most dominant
plane which is located in front of the robot and has
an normal vector approximately similar to the ground
plane. After determining the inliers of this plane, we
compute the minimal rectangle enclosing the convex
hull of the inliers which we consider to be the surface
to be cleaned.

2) We divide this surface in rectangular cells according
to the size of the tool used, in our case, rectangles of
a side length of l = 3 cm.

3) According to this grid, we assign the pixels from the
color image to grid cells.

4) We discretize the colors of the grid cells into a small
set of distinct color classes.

C. Automatic color clustering

We apply unsupervised clustering to learn a suitable
mapping from camera images to cell states. This allows the
robot to autonomously bootstrap an observation model that is
suitable for the current environment of the robot. To achieve
this, we use the expectation maximization (EM) algorithm as
implemented in OpenCV [1]. In preliminary experiments, we
found that the Lab color space yielded the best results for our
application. Note that k could be selected automatically [12].
However, in our current implementation, we set k manually
to a suitable value.

An example of the result of automatic color clustering and
table state discretization is shown in Figure 2. The left image
shows the original, while the right image shows the result
after table detection, segmentation, unsupervised clustering,
and discretization. As each cell consists of multiple pixels,
we compute the class distribution for each cell, i.e., the
probability P(si = j) that the i-cell belongs to class j. An
example of this class distribution of one specific cell is shown
in Figure 3 before and after cleaning. As one can see, the
brown components (class 3) were removed by cleaning this
cell. Most of these pixels transitioned to the light green class
(class 2) and some to the white class (class 1).

D. Learning the Transition Matrix

For estimating the transition function P(s′a | sa,a), we
use a counting matrix T ∈ Nk×k that reflects how often
the robot has observed a (pixel-wise) transition between
color classes. The elements ti j of T thus correspond to the
absolute frequency that a pixel of class i has changed to
class j through cleaning. Every time the robot observes a



(a) Original image (b) Discretized image.

Fig. 2: We use unsupervised clustering to discretize the colors
on the surface of the table. In this case, we set k = 3. The
corners of the selected surface is indicated by the four black
dots.
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(a) Class distribution before cleaning
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(b) Class distribution after cleaning

Fig. 3: Example of the class distribution of a cell before and
after the cleaning action.

cell after moving the tool to this cell, the robot updates T .
For each pixel located in the cell that the robot acted upon
and observed, we update T by

ti j← ti j +1. (9)

From this counting matrix, we compute the entries of
the probabilistic transition matrix underlying the transition
model P(s′a | sa,a) as follows:

P(s′a = j | sa = i,a) =
ti j

∑
k
j′=1 ti j′

. (10)

We initialize each element of the counting matrix to a small
value to express our prior belief that transitions between all
color classes are equally likely.

E. Determining when to Stop Cleaning

Given the current estimate of the transition function, we
can compute the expected number of cells that the robot can
clean as

λ =
n

∑
a=1

k

∑
j=1

P(sa 6= j | sa = j,a). (11)

A possible criterion for stopping to clean the table is to check
whether λ drops below some threshold, for example, λ < 1
would let the robot stop cleaning if it expects that less than
one uncleaned cells remain.

IV. EXPERIMENTS

For our experiments, we use the PR2 mobile manipulation
robot from Willow Garage. We set up a table and positioned
the PR2 such that the entire table could be reached with one

arm (see Figure 1). As a tool, we used the top of a vacuum
cleaner tube.

The goal of our experiments is to demonstrate that our
approach

1) applies to different environments,
2) robustly learns the state transition model,
3) significantly increases the speed and efficiency of table

cleaning.
We show our first claim by evaluating our approach in

two different environments, i.e., on tables with different dirt
and cloth colors. In our first environment, the table surface
is white but contains a few green patches that cannot be
removed by the robot. Furthermore, we added some coffee
beans (brown) that the robot could remove using the vacuum
cleaner. We set the number of classes k = 3 according to
the number of distinct features present in this environment.
Furthermore, we set the discount factor γ = 0 which reduces
the policy search to a greedy 1-step lookahead problem
which can be solved in real-time. In preliminary experiments,
we found that this simplification does not signficantly affect
the performance of our system. However, if the travel time
between different locations on the table played a more
significant role, then the order of execution would become
more important and thus more steps should be planned ahead.

Figure 4 shows a single run of table cleaning in the first
environment. All three figures show the state of the table
as it was observed by the robot. To improve readability, we
depicted for each cell only the dominating color class per
cell.

The trajectory planned using the initial transition matrix
is shown in Figure 4a. As the expected change in class is
initially assumed to be the same for all cells, the difference
in reward for cleaning different cells only results from the
distance to be traveled. Thus, the path starts at the table cell
closest to the initial gripper position which is located in the
right bottom corner (indicated by a blue dot). While the robot
starts to execute this path, it re-observes the table state and
updates the transition matrix. In particular, it detects that it
can clean brown cells. As a consequence of this update, it
re-plans the cleaning trajectory. Figure 4b shows the actually
executed trajectory. It can be seen that this trajectory is
significantly shorter than the trajectory that covers the whole
table. The final state of table as observed by the robot is
depicted in 4c.

The state transition model corresponding to this run is
shown in Figure 6a. Note that the values on the diagonal
indicate the probability that a cell of this color is not affected
by cleaning. In this experiment, the robot estimated the
probability of not being able to clean the green (class 1)
and white (class 3) cells to 0.89 and 0.77, respectively. The
values are not exactly one as a result of our prior assumption
and noise in the observations of the robot. In contrast, the
robot learned that brown cells (class 2) transition with a
high probability (0.71) to white when being cleaned. This
experiment shows that the robot correctly recognized that
the brown color class (corresponding to the coffee beans) is
cleanable and the white and green table cloth is immutable.



(a) Initial path (b) Executed path (c) Final state

Fig. 4: Samples result of the first experiment with parameter α set to 0.5. Left: The initial path consists of 135 steps, and
covers all cells as the robot does not know which cells it can actually clean. Middle: During cleaning, the robot realizes that it
can clean the brown cells. The green cells are not affected. Right: The state of the table, as observed after the robot stopped.
Under the coffee beans on the right, a green patch appears. Furthermore, the robot has to deal with noisy observations of
the cell state (some cells change their state unexpectedly).

(a) Initial path (b) Executed path (c) Final state

Fig. 5: Sample result of the second experiment. Note that we only draw an arrow if the tool position changes. In some cases
the robot cleans the same cell several times as sometimes a cell does not become clean entirely. It may also happen that the
robot cleans parts of other cells. These effects are due to noise in the robot motion and also depend on the type of feature.
Coffee beans for examples are cleaned more easily than the small pieces of paper used in this experiment.
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Fig. 6: Learned transition matrix. All rows are normalized
to 1. The classes corresponding to each row/column are
depicted with their mean color. Rows: class label before
cleaning. Column: class label after cleaning.

To demonstrate the robustness and stability of our ap-
proach and to show its efficiency in terms of cleaning speed,
we repeated this experiment ten times. After every run, we
re-set the table back to its initial state. Furthermore, to gather
the cleaning statistics, the robot removed its manipulator
from the scene to observe the state after each step. Note
that this is in general not necessary. In all other experiments,
the robot plans the trajectory on our current estimates and
delay the observation of the cleaned cells as long as they
cannot be observed, e.g., as a result of self-occlusion. Figure
7 shows the results of the dirt versus the number of cleaning
actions. After the experiment (and only for the purpose

of evaluation), we manually specified that the brown color
class corresponded to dirt. The initial plan (corresponding to
the full coverage strategy in the absence of the transition
matrix) slowly cleans the table, i.e., the amount of dirt
slowly reduces. In contrast, the dirt percentage when using
our learning approach rapidly reduces and settles at zero
within the first 15 time steps. The line corresponds to mean
percentage of dirt and the error bars correspond to the
doubled standard deviation. This experiment shows that our
approach leads to a significant speed up in the number of
cleaning steps.

In addition to experiment one, we tried our approach on
another environment. For the second experiment, we covered
the table with the white and red blanket as shown in Figure 1
and again used coffee beans as dirt. Figure 5 shows the
result of one of the runs in this environment. As one can
see, the resulting behavior is similar to the first experiment.
The robot correctly recognizes that the brown color class
is cleanable and thus specifically approaches those cells
(see Figure 5c). The learned transition model is depicted
in Figure 6b. Note that for the first two classes, there is a
very high probability that the class labels are not affected
by cleaning. In contrast, class three has a low probability
of remaining brown. Compared to the first experiment, the
probability of the dirt to not change increased slightly. This
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Fig. 7: Experiment: Function of the percentage of dirt still on
the table including error bars denoting the double standard
deviation. The “initial plan” corresponds to the performance
of the initial transition function. The “revised plan” visualizes
the path planned using our approach, i.e., by updating the
transition function and re-planning at each time step.

result is attributed to the blanket. The coffee beans remained
on the blanket a little more often in spite of vacuuming.

V. CONCLUSIONS

In this paper, we presented a novel approach to enable
a manipulation robot to learn how to clean surfaces. Our
approach phrases the cleaning task as an MDP. The state
transition model for this MDP is previously unknown. Our
approach learns this transition model by observing the out-
comes of the actions carried out by the robot. After each
action the robot adapts its path using the updated transition
model. In practical experiments, we demonstrated that our
approach enables a service robot to improve its performance
in a cleaning task by learning how to recognize dirt and to
specifically clean only these dirty regions.

Despite these encouraging results, there is still room for
improvements. For example, the knowledge about the transi-
tion function also enabled us to derive a stopping condition,
i.e., to determine that the table has been cleaned sufficiently.
In future experiments, it remains to be experimentally vali-
dated that the proposed measure is a suitable stopping cri-
teria. Furthermore, the robot could learn different transition
matrices for different tools, or/and different environments.
In particular, we would like to consider a wet sponge that
would enable the robot to clean coffee stains, but not help
to clean fluffs of dust. If the number of tools and states in
the environment grows, own experimentation might require
too much time to find the right tool for the right type of
dirt. In this case, the robot could learn (or initialize) the
transition function more efficiently by observing a human
demonstrator.
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