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3D Mapping with an RGB-D Camera
Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, Wolfram Burgard

Abstract—In this article we present a novel mapping system
that robustly generates highly accurate 3D maps using an RGB-D
camera. Our approach does not require any further sensors
or odometry. With the availability of low-cost and light-weight
RGB-D sensors such as the Microsoft Kinect, our approach
applies to small domestic robots such as vacuum cleaners as
well as flying robots such as quadrocopters. Furthermore, our
system can also be used for free-hand reconstruction of detailed
3D models. In addition to the system itself, we present a
thorough experimental evaluation on a publicly available bench-
mark dataset. We analyze and discuss the influence of several
parameters such as the choice of the feature descriptor, the
number of visual features, and validation methods. The results of
the experiments demonstrate that our system can robustly deal
with challenging scenarios such as fast cameras motions and
feature-poor environments while being fast enough for online
operation. Our system is fully available as open-source and has
already been widely adopted by the robotics community.

Index Terms—RGB-D, Localization, Mapping, SLAM, Open-
Source.

I. INTRODUCTION

THE problem of simultaneous localization and mapping
(SLAM) is one of the most actively studied problems in

the robotics community in the last decade. The availability of a
map of the robot’s workspace is an important requirement for
the autonomous execution of several tasks including localiza-
tion, planning, and navigation. Especially for mobile robots
working in complex, dynamic environments, e.g., fulfilling
transportation tasks on factory floors or in a hospital, it is
important that they can quickly generate (and maintain) a 3D
map of their workspace using only onboard sensors.

Manipulation robots, for example, require a detailed model
of their workspace for collision-free motion planning and
aerial vehicles need detailed maps for localization and navi-
gation. While previously many 3D mapping approaches relied
on expensive and heavy laser scanners, the commercial launch
of RGB-D cameras based on structured light provided an
attractive, powerful alternative.

In this work, we describe one of the first RGB-D SLAM sys-
tems that took advantage of the dense color and depth images
provided by RGB-D cameras. Compared to previous work, we
introduce several extensions that aim at further increasing the
robustness and accuracy. In particular, we propose the use of
an environment measurement model (EMM) to validate the
transformations estimated by feature correspondences and the
iterative closest point (ICP) algorithm. In extensive experi-
ments we show that our RGB-D SLAM system allows us to
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Fig. 1. Top: Occupancy voxel map of the PR2 robot. Voxel resolution is
5 mm. Occupied voxels are represented with color for easier viewing. Bottom
row: A sample of the RGB input images.

accurately track the robot pose over long trajectories and under
challenging circumstances. To allow other researchers to use
our software, reproduce the results, and improve on them, we
released the presented system under an open-source license.
The code and detailed installation instructions are available
online [1].

II. RELATED WORK

Wheeled robots often rely on 2D laser range scanners,
which commonly provide very accurate geometric measure-
ments of the environment at high frequencies. To compute
the relative motion between observations, most state-of-the-
art SLAM (and also localization-only) systems use variants
of the iterative-closest-point (ICP) algorithm [2], [3], [4]. A
variant particularly suited for man-made environments uses the
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point-to-line metric [5]. Recent approaches demonstrate that
the robot pose can be estimated at millimeter accuracy [6]
using two laser range scanners and ICP. Disadvantages of
ICP include the dependency on a good initial guess to avoid
getting stuck in a local minimum and the lack of a measure
of the overall quality of the match. Approaches that use
planar localization and a movable laser range scanner, e.g.,
on a mobile base with a pan-tilt unit or at the tip of a
manipulator, allow for precise localization of a 2D sensor in
3D. In combination with an IMU, this can also be used to
create a map with a quadrocopter [7].

Visual SLAM approaches [8], [9], [10], also referred to
as “structure and motion estimation” [11], [12] compute
the robot’s motion and the map using cameras as sensors.
Stereo cameras are commonly used to gain sparse distance
information from the disparity in textured areas of the re-
spective images. In contrast to laser-based SLAM, Visual
SLAM systems typically extract sparse keypoints from the
camera images. Visual feature points have the advantage of
being more distinctive than typical geometric structures, which
simplifies data association. Popular general purpose keypoint
detectors and descriptors include SIFT [13], SURF [14], and
ORB [15]. Descriptors can easily be combined with different
keypoint detectors. In our experiments, we use the detector
originally proposed for the descriptor. For SURF, the detection
time strongly dominates the runtime, therefore we further
analyzed the descriptor in combination with the keypoint
detector proposed by Shi and Tomasi [16], which is much
faster (though at the price of lower repeatability) than the
detector proposed in [14]. We compare the performance of
the above descriptors in our SLAM system in Section IV-B.

Recently introduced RGB-D cameras such as the Microsoft
Kinect or the ASUS Xtion Pro Live offer a valuable alternative
to laser scanners, as they provide dense, high frequency depth
information at a low price, size and weight. The depth sensor
projects structured light in the infrared spectrum, which is
perceived by an infrared camera with a small baseline. As
structured light sensors are sensitive to illumination, they
are generally not applicable in direct sunlight. Time-of-flight
(TOF) cameras are less sensitive to sunlight, but have lower
resolutions, are more noisy, more difficult to calibrate, and
much more expensive.

The first scientifically published RGB-D SLAM system was
proposed by Henry et al. [17] who use visual features in
combination with GICP [18] to create and optimize a pose
graph. Unfortunately neither the software nor the data used
for evaluation have been made publicly available, so that a
direct comparison cannot be carried out.

KinectFusion [19] is an impressive approach for surface
reconstruction based on a voxel grid containing the truncated
signed distance [20] to the surface. Each measurement is di-
rectly fused into the voxel representation. This reduces drift as
compared to the frame-to-frame comparisons we employ, yet
lacks the capability to recover from accumulating drift by loop
closures. Real time performance is achieved, but requires high
performance graphics hardware. The size of the voxel grid has
cubic influence on the memory usage, so that KinectFusion
only applies to small workspaces. Kintinuous [21] overcomes

Fig. 2. Even under challenging conditions, a robot’s trajectory can be
accurately reconstructed for long trajectories using our approach. The vertical
deviations are within 20 cm. (Sequence shown: “fr2/pioneer slam”)

this limitation by virtually moving the voxel grid with the
current camera pose. The parts that are shifted out of the
reconstruction volume are triangulated. However, so far, the
system cannot deal with loop closures and therefore may
drift indefinitely. Our experiments show comparable quality
in the trajectory estimation. Zeng et al. [22] show that the
memory requirements of the voxel grid can be greatly reduced
using an octree to store the distance values. Hu et al. [23]
recently proposed a SLAM system that switches between
bundle adjustment with and without available depth, which
makes it more robust to lack of depth information, e.g., due
to distance limitations and sunlight.

Our system has been one of the first SLAM systems specif-
ically designed for Kinect-style sensors. In contrast to other
RGB-D SLAM systems, we extensively evaluated the overall
system [24], and freely provide an open-source implementa-
tion to stimulate scientific comparison and progress. While
many of the discussed approaches bear the potential to perform
well, they are difficult to compare, because the evaluation data
is not available. Therefore, we advocate the use of publicly
available benchmarks and developed the TUM RGB-D bench-
mark [25] which provides several sequences with varying
difficulty. It contains synchronized ground truth data for the
sensor trajectory of each sequence, captured with a high
precision motion capturing system. Each sequence consists of
approx. 500 to 5,000 RGB-D frames.

III. APPROACH

A. System Architecture Overview

In general, a graph-based SLAM system can be broken up
into three modules [26], [27]: Frontend, backend and final
map representation. The frontend processes the sensor data to
extract geometric relationships, e.g., between the robot and
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Fig. 3. Schematic overview of our approach. We extract visual features that we associate to 3D points. Subsequently, we mutually register pairs of image
frames and build a pose graph, that is optimized using g2o. Finally, we generate a textured voxel occupancy map using the OctoMapping approach.

landmarks at different points in time. The frontend is specific
to the sensor type used. Except for sensors that measure the
motion itself as, e.g., wheel encoders or IMUs, the robot’s
motion needs to be computed from a sequence of observations.
Depending on the sensor type there are different methods
that can be applied to compute the motion in between two
observations. In the case of an RGB-D camera the input is
an RGB image IRGB and a depth image ID. We determine
landmarks by extracting a high-dimensional descriptor vector
d ∈ R64 from IRGB and store them together with y ∈ R3,
their location relative to the observation pose x ∈ R6.

To deal with the inherent uncertainty introduced, e.g., by
sensor noise, the backend of the SLAM system constructs
a graph that represents the geometric relations and their
uncertainties. Optimization of this graph structure can be used
to obtain a maximum likelihood solution for the represented
robot trajectory. With the known trajectory we can project the
sensor data into a common coordinate frame. However, in most
applications a task-specific map representation is required, as
using sensor data directly would be highly inefficient. We
therefore create a three-dimensional probabilistic occupancy
map from the RGB-D data, which can be efficiently used for
navigation and manipulation tasks. A schematic representation
of the presented system is shown in Figure 3. The following
sections describe the illustrated parts of the system.

B. Egomotion Estimation
The frontend of our SLAM system uses the sensor input

in form of landmark positions Y = y1, . . . ,yn to compute
geometric relations zij which allow us to estimate the motion
of the robot between state xi and xj . Visual features ease the
data association for the landmarks by providing a measure
for similarity. To match a pair of the keypoint descriptors
(di,dj) one computes their distance in the descriptor space.
For SIFT and SURF the proposed distance is Euclidean.
However, Arandjelović and Zisserman [28] propose to use
the Hellinger kernel to compare SIFT features. They report
substantial performance improvements for object recognition.
We implemented both distance measures and briefly discuss
the impact on accuracy in Section IV-B. For ORB the Ham-
ming distance is used. By itself, however, the distance is
not a criterion for association as the distance of matching

descriptors can vary greatly. Due to the high dimensionality
of the feature space it is generaly not feasible to learn a
mapping for a rejection threshold. As proposed by Lowe, we
resort to the ratio between the nearest neighbor and the second
nearest neighbor in feature space. Under the assumption that
a keypoint only matches to exactly one other keypoint in
another image, the second nearest neighbor should be much
further away. Thus, a threshold on the ratio between the
distances of nearest and second nearest neighbor can be used
effectively to control the ratio between false negatives and
false positives. To be robust against false positive matches,
we employ RANSAC [29] when estimating the transforma-
tion between two frames, which proves to be very effective
against individual mismatches. We quickly initialize a trans-
formation estimate from three feature correspondences. The
transformation is verified by computing the inliers using a
threshold θ based on the Mahalanobis distance between the
corresponding features. For increased robustness in case of
largely missing depth values, we also include features without
depth reading into the verification. Particularly in case of few
possible matches or many similar features, it is crucial to
exploit the possible feature matches. We therefore threshold
the matches at a permissive ratio. It has been highly beneficial
to recursively reestimate the transformation with reducing
threshold θ for the inlier determination, as proposed by Chum
et al. [30]. Combined with a threshold for the minimum
number of matching features for a valid estimate, this approach
works well in many scenarios.

For larger man-made environments the method is limited in
its effectiveness, as these usually contain repetitive structures,
e.g., the same type of chair, window or repetitive wallpapers.
Given enough similar features through such identical instances
the corresponding feature matches between two images result
in the estimation of a bogus transformation. The threshold
on the minimum number of matches helps against random
similarities and repetition of objects with few features but
our experiments show that setting the threshold high enough
to exclude estimates from systematic misassociations comes
with a performance penalty in scenarios without the mentioned
ambiguities. The alternative validation method proposed in
Section III-C is therefore a highly beneficial extension.

We use a least squares estimation method [31] in each
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iteration of RANSAC to compute the motion estimate from
the established 3D point correspondences. To take the strongly
anisotropic uncertainty of the measurements into account the
transformation estimates can be improved by minimizing the
squared Mahalanobis distance instead of the squared Euclidean
distance between the correspondences. This procedure has
also been independently proposed by Henry et al. [17] in
his most recent work and referred to as two-frame sparse
bundle adjustment. We implemented this by applying g2o
(see Section III-E) after the motion estimation. We optimize
a small graph consisting only of the two sensor poses and the
previously determined inliers. However, in our experiments,
this additional optimization step shows only a slight improve-
ment of the overall trajectory estimates. We also investigated
including the landmarks in the global graph optimization as
it has been applied by other researchers. Contrary to our
expectations we could only achieve minor improvements. As
the number of landmarks is much higher than the number of
poses, the optimization runtime increases substantially.

C. Environment Measurement Model

Given a high percentage of inliers, the discussed methods
for egomotion estimation can be assumed successful. However,
a low percentage does not necessarily indicate an unsuccessful
transformation estimate and could be a consequence of low
overlap between the frames or few visual features, e.g., due
to motion blur, occlusions or lack of texture. Hence, both ICP
and RANSAC using feature correspondences lack a reliable
failure detection.

We therefore developed a method to verify a transformation
estimate, independent of the estimation method used. Our
method exploits the availability of structured dense depth data,
in particular the contained dense free-space information. We
propose the use of a beam-based environment measurement
model (EMM). An EMM can be used to penalize pose esti-
mates under which the sensor measurements are improbable
given the physical properties of the sensing process. In our
case, we employ a beam model, to penalize transformations
for which observed points of one depth image should have
been occluded by a point of the other depth image.

EMMs have been extensively researched in the context of
2D Monte Carlo Localization and SLAM methods [32], where
they are used to determine the likelihood of particles on the
basis of the current observation. Beam-based models have
been mostly used for 2D range finders such as laser range
scanners, where the range readings are evaluated using ray
casting in the map. While this is typically done in a 2D
occupancy grid map, a recent adaptation of such a beam-based
model for localization in 3D voxel maps has been proposed
by Oßwald et al. [33]. Unfortunately, the EMM cannot be
trivially adapted for our purpose. First, due to the size of the
input data, it is computationally expensive to compute even
a partial 3D voxel map in every time step. Second, since
a beam model only provides a probability density for each
beam [32], we still need to find a way to decide whether
to accept the transformation based on the observation. The
resulting probability density value obtained for each beam does
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Fig. 4. Two cameras and their observations aligned by the estimated
transformation TAB . In the projection from camera A to camera B, the data
association of yi and yj is counted as an inlier. The projection of yq cannot
be seen from Camera B, as it is occluded by yk . We assume each point
occludes an area of one pixel. Projecting the points observed from camera
A to camera B, the association between yi and yj is counted as inlier. In
contrast, yp is counted as outlier, as it falls in the free space between camera
A and observation yq . The last observation, yk is outside of the field of view
of camera A and therefore ignored. Hence, the final result of the EMM is 2
inliers, 1 outlier and 1 occluded.

not constitute an absolute quality measure. Neither does the
product of the densities of the individual beams. The value for,
e.g., a perfect match will differ depending on the range value.
In Monte Carlo methods, the probability density is used as
a likelihood value that determines the particle weight. In the
resampling step, this weight is used as a comparative measure
of quality between the particles. This is not applicable in our
context as we do not perform a comparison between several
transformation candidates for one measurement.

We thus need to compute an absolute quality measure. We
propose to use a procedure analogous to statistical hypothesis
testing. In our case the null hypothesis being tested is the
assumption that after applying the transformation estimate,
spatially corresponding depth measurements stem from the
same underlying surface location.

To compute the spatial correspondences for an alignment
of two depth images I ′D and ID, we project the points y′i
of I ′D into ID to obtain the points yi (denoted without the
prime). The image raster allows for a quick association to a
corresponding depth reading yj . Since yj is given with respect
to the sensor pose it implicitly represents a beam, as it contains
information about free space, i.e., the space between the origin
and the measurement. Points that do not project into the image
area of ID or onto a pixel without valid depth reading are
ignored.

For the considered points we model the measurement noise
according to the equations for the covariances given by
Khoshelham and Elberink [34], from which we construct
the covariance matrix Σj for each point yj . The sensor
noise for the points in the second depth image is represented
accordingly. To transform a covariance matrix of a point to the
coordinate frame of the other sensor pose, we rotate it using
R, the rotation matrix of the estimated transformation, i.e.,
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Σi = RTΣ′iR.
The probability for the observation yi given an observation

yj from a second frame can be computed as

p(yi | yj) = η p(yi,yj), with η = p(yj)
−1 (1)

Since the observations are independent given the true obstacle
location z we can rewrite the right-hand side to

p(yi | yj) = η

∫
p(yi,yj | z) p(z) dz, (2)

= η

∫
p(yi | z) p(yj | z) p(z) dz, (3)

= η

∫
N (yi; z,Σi)N (yj ; z,Σj) p(z) dz. (4)

Exploiting the symmetry of Gaussians we can write

= η

∫
N (z; yi,Σi)N (z; yj ,Σj)p(z) dz (5)

The product of the two normal distributions contained in the
integral can be rewritten [35] so that we obtain

p(yi | yj) = η

∫
N (yi; yj ,Σij)N (z; yc, Σ̂ij)p(z) dz, (6)

where yc = (Σ−1i + Σ−1j )−1(Σ−1i yi + Σ−1j yj)
−1, (7)

Σij = Σi + Σj and Σ̂ij = (Σ−1i + Σ−1j )−1 (8)

The first term in the integral in (6) is constant with respect to
z, which allows us to move it out of the integral

p(yi | yj) = ηN (yi; yj ,Σij)

∫
N (z; yc, Σ̂ij)p(z) dz. (9)

Since we have no prior knowledge about p(z) we assume it to
be a uniform distribution. As it is constant, the value of p(z)
thus becomes independent of z and we can move it out of
the integral. We will see below that the posterior distribution
remains a proper distribution despite the choice of an improper
prior [36]. The remaining integral only contains the normal
distribution over z and, by the definition of a probability
density function, reduces to one, leaving only

p(yi | yj) = ηN (yi; yj ,Σij) p(z). (10)

Informally speaking, having no prior knowledge about the true
obstacle also means we have no prior knowledge about the
measurement. This can be shown by expanding the normal-
ization factor

η = p(yj)
−1 =

(∫
p(yj |z) dz

)−1
(11)

=

(∫
N (yj ; z,Σj)p(z) dz

)−1
(12)

and using the same reasoning as above, we obtain

p(yj)
−1 =

(
p(z)

∫
N (z; yj ,Σj) dz

)−1
(13)

= p(z)−1 (14)

Combining (14) and (10), we get the final result

p(yi | yj) = N (yi; yj ,Σij) (15)

We can combine the above three-dimensional distributions
of all data associations to a 3N -dimensional normal distribu-
tion, where N is the number of data associations. Assuming
independent measurements yields

p(∆Y ) = N (∆Y | 0,Σ) ∈ R3N , (16)

where ∆Y = (. . . , ∆y>ij , . . .)
> is a column vector contain-

ing the N individual terms ∆yij = yi − yj and Σ contains
the corresponding covariance matrices Σij on the (block-)
diagonal.

Note that the above formulation contains no additional term
for short readings as given in [32] since we expect a static
environment during mapping and want to penalize this kind
of range reading, as it is our main indication for misalignment.
In contrast, range readings that are projected behind the
corresponding depth value, are common, e.g., when looking
behind an obstacle from a different perspective. “Occluded
outliers”, the points projected far behind the associated beam
(e.g., further than three standard deviations) are therefore
ignored. However, we do want to use the positive information
of “occluded inliers”, points projected closely behind the
associated beam, which in practice confirm the transformation
estimate. Care has to be taken when examining the statistical
properties, as this effectively doubles the inliers. Figure 4
illustrates the different cases of associated observations.

A standard hypothesis test could then be used for rejecting
a transformation estimate at a certain confidence level, by
testing the p-value of the Mahalanobis distance for ∆Y for
a χ2

3N distribution (a chi-square distribution with 3N degrees
of freedom). In practice, however, this test is very sensitive
to small errors in the transformation estimate and therefore
hardly useful. Even under small misalignments, the outliers at
depth jumps will be highly improbable under the given model
and will lead to rejection. We therefore apply a measure that
varies more smoothly with the error of the transformation.

Analogously to robust statistics such as the median and the
median absolute deviation, we use the hypothesis test on the
distributions of the individual observations (15) and compute
the fraction of outliers as a criterion to reject a transformation.
Assuming a perfect alignment and independent measurements,
the fraction of inliers within, e.g., three standard deviations can
be computed from the cumulative density function of the nor-
mal distribution. The fraction of inliers is independent of the
absolute value of the outliers and thus smoothly degenerates
for increasing errors in the transformation while retaining an
intuitive statistical meaning. In our experiments (Section IV-D)
we show that applying a threshold on this fraction allows to
effectively reduce highly erroneous transformation estimates
that would greatly diminish the overall quality of the map.

D. Visual Odometry and Loop Closure Search
Applying an egomotion estimation procedure, such as the

one described in Section III-B, between consecutive frames
provides visual odometry information. However, the indi-
vidual estimations are noisy, particularly in situations with
few features or when most features are far away, or even
out of range. Combining several motion estimates, by addi-
tionally estimating the transformation to frames other than
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Fig. 5. Pose graph for the sequence “fr1/floor”. Top: Transformation
estimation to consecutive predecessors and randomly sampled frames. Bottom:
Additional exploitation of previously found matches using the geodesic
neighborhood. In both runs, the same overall number of candidate frames for
frame-to-frame matching were processed. On the challenging “Robot SLAM”
dataset, the average error is reduced by 26 %.

the direct predecessor substantially increases accuracy and
reduces the drift. Successful transformation estimates to much
earlier frames, i.e., loop closures, may drastically reduce the
accumulating error. Naturally, this increases the computational
expense linearly with the number of estimates. For multi-
core processors, this is mitigated to a certain degree, since
the individual frame-to-frame estimates are independent and
can therefore be parallelized. However, a comparison of a
new frame to all predecessor frames is not feasible and the
possibility of estimating a valid transformation is strongly
limited by the overlap of the field of view, the repeatability
of the keypoint detector and the robustness of the keypoint
descriptor.

Therefore, we require a more efficient strategy for selecting
candidate frames for which to estimate the transformation.
Recognition of images in large sets of images has been inves-
tigated mostly in the context of image retrieval systems [37]
but also for large scale SLAM [38]. While these methods
may be required for datasets spanning hundreds of kilome-
ters, they require an offline training step to build efficient
data structures. Due to the sensor limitations, we focus on
indoor applications and present an efficient, straightforward
to implement algorithm to suggest candidates for frame-to-
frame matching. We employ a strategy with three different
types of candidates. Firstly, we apply the egomotion estimation
to n immediate predecessors. To efficiently reduce the drift,
we secondly search for loop closures in the geodesic (graph-)
neighborhood of the previous frame. We compute a minimal
spanning tree of limited depth from the pose graph, with the
sequential predecessor as root node. We then remove the n
immediate predecessors from the tree to avoid duplication and
randomly draw k frames from the tree with a bias towards
earlier frames. We therefore guide the search for potentially

successful estimates by those previously found. In particular,
when the robot revisits a place, once a loop closures is
found this procedure exploits the knowledge about the loop by
preferring candidates near the loop closure in the sampling.

To find large loop closures we randomly sample l frames
from a set of designated keyframes. A frame is added to
the set of keyframes, when it cannot be matched to the
previous keyframe. In this way, the number of frames for
sampling is greatly reduced, while the field of view of the
frames in between keyframes always overlaps with at least
one keyframe.

Figure 5 shows a comparison between a pose graph con-
structed without and with sampling of the geodesic neighbor-
hood. The extension of found loop closures is clearly visible.
The top graph has been created by matching n = 3 immediate
predecessors and k = 6 randomly sampled keyframes. The
bottom graph has been created with n = 2, k = 5 and
l = 2 sampled frames from the geodesic neighborhood. Table I
exemplary states the parameterization for a subset of our
experiments. The choice of these parameters is crucial for the
performance of the system. For short, feature-rich sequences
low values can be set, as done for "fr1/desk". For longer
sequences the values need to be increased.

E. Graph Optimization
The pairwise transformation estimates between sensor

poses, as computed by the SLAM frontend, form the edges
of a pose graph. Due to estimation errors, the edges form no
globally consistent trajectory. To compute a globally consistent
trajectory we optimize the pose graph using the g2o frame-
work [39], which performs a minimization of a non-linear error
function that can be represented as a graph. More precisely,
we minimize an error function of the form

F(X) =
∑
〈i,j〉∈C

e(xi,xj , zij)
>Ωije(xi,xj , zij) (17)

to find the optimal trajectory X∗ = argminX F(X). Here,
X = (x>1 , . . . ,x

>
n )> is a vector of sensor poses. Further-

more, the terms zij and Ωij represent respectively the mean
and the information matrix of a constraint relating the poses
xi and xj , i.e., the pairwise transformation computed by the
frontend. Finally, e(xi,xj , zij) is a vector error function that
measures how well the poses xi and xj satisfy the constraint
zij . It is 0 when xi and xj perfectly match the constraint,
i.e., the difference of the poses exactly matches the estimated
transformation.

Global optimization is especially beneficial in case of large
loop closures, i.e., when revisiting known parts of the map,
since the loop closing edges in the graph diminish the accumu-
lated error. Unfortunately, large errors in the motion estimation
step can impede the accuracy of large parts of the graph. This
is primarily a problem in areas of systematic misassociation
of features, e.g., due to repeated occurrences of objects.
For challenging data where several bogus transformations are
found, the trajectory estimate obtained after graph optimization
may be highly distorted. The validation method proposed in
Section III-C substantially improves the rate of faulty trans-
formation estimates. However, the validity of transformations
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Fig. 6. Occupancy voxel representation of the sequence “fr1/desk” with
1 cm3 voxel size. Occupied voxels are represented with color for easier
viewing.

can not be guaranteed in every case. The residual error of the
graph after optimization allows to determine inconsistencies in
edges. We therefore use a threshold on the summands of Equa-
tion 17 to prune edges with high error values after the initial
convergence and continue the optimization. Figure 10 shows
the effectiveness of this approach, particularly in combination
with the EMM.

F. Map Representation

The system described so far computes a globally consistent
trajectory. Using this trajectory we can project the original
point measurements into a common coordinate frame, thereby
creating a point cloud representation of the world. Adding
the sensor viewpoint to each point, a surfel map can be
created. Such models, however, are highly redundant and
require vast computational and memory resources, therefore
the point clouds are often subsampled, e.g., using a voxel grid.

To overcome the limitations of point cloud representations,
we use 3D occupancy grid maps to represent the environment.
In our implementation, we use the octree-based mapping
framework OctoMap [40]. The voxels are managed in an
efficient tree structure that leads to a compact memory rep-
resentation and inherently allows for map queries at multiple
resolutions. The use of probabilistic occupancy estimation fur-
thermore provides a means of coping with noisy measurements
and errors in pose estimation. A crucial advantage in contrast
to a point-based representation, is the explicit representation of
free space and unmapped areas which is essential for collision
avoidance and exploration tasks.

The memory efficient 2.5D representation in a depth image
can not be used for storing a complete map. Using an explicit
3D representation, each frame added to a point cloud map
requires approximately 3.6 Megabytes in memory. An unfil-
tered map constructed from the benchmark data used in our
experiments would require between two and five Gigabytes.
In contrast, the corresponding OctoMaps with a resolution
of 2 cm ranges from only 4.2 to 25 Megabytes. A further
reduction to an average of few hundred kilobytes can be
achieved if the maps are stored binary (i.e., only “free” vs.
“occupied”).

On the downside, the creation of an OctoMap requires more
computational resources since every depth measurement is
raycasted into the map. The time required per frame is highly
dependent on the voxel size, as the number of traversed voxels
per ray increases with the resolution.

Raycasting takes about one second per 100,000 points at
a voxel size of 5 cm on a single core. At a 5 mm resolution,
as in Figure 1, raycasting a single RGB-D frame took about
25 seconds on the mentioned hardware. For online generation
of a voxel map we therefore need to lower the resolution
and raycast only a subset of the cloud. In our experiments,
using a resolution of 10 cm and a subsampling factor of 16
allowed for 30 Hz updates of the map and resulted in maps
suitable for online navigation. Note however, that a voxel map
cannot be updated efficiently in case of major corrections of
the past trajectory as obtained by large loop closures. In most
applications it is therefore reasonable to (re-)create the map
in case of such an event.

IV. EXPERIMENTAL EVALUATION

For a 3D SLAM system that aims to be robust in real-
world applications, there are many parameters and design
choices that influence the overall performance. To determine
the influence of each parameter on the overall performance
of our system, we employ the RGB-D benchmark [25]. In
the following, we first describe the benchmark datasets and
error metric. Subsequently, we analyze the presented system
by means of the quantitative results of our experiments. Note
that the presented results were obtained offline, processing
every recorded frame, which makes the qualitative results
independent of the used hardware. However, the presented
system has also been successfully used for online mapping.
We used an Intel Core i7 CPU with 3.40GHz, and an nVidia
GeForce GTX 570 graphics card for all experiments.

A. RGB-D Benchmark Datasets

The RGB-D benchmark provides an RGB-D dataset of
several sequences captured with two Microsoft Kinect and
one Asus Xtion Pro Live sensor. Synchronized ground truth
data for the sensor trajectory, captured with a high precision
motion capturing system, is available for all sequences. The
benchmark also provides evaluation tools to compute several
error metrics given an estimated trajectory. We use the root-
mean-square of the absolute trajectory error (ATE) in our
experiments which measures the deviation of the estimated
trajectory to the ground truth trajectory. For a trajectory
estimate X̂ = {x̂1 . . . x̂n} and the corresponding ground truth
X it is defined as

ATERMSE(X̂,X) =

√√√√ 1

n

n∑
i=1

||trans(x̂i)− trans(xi)||2,

(18)
i.e., the root-mean-square of the Euclidean distances between
the corresponding ground truth and the estimated poses. To
make the error metric independent of the coordinate system in
which the trajectories are expressed, the trajectories are aligned
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such that the above error is minimal. The correspondences of
poses are established using the timestamps.

The map error and the trajectory error of a specific dataset
strongly depends on the given scene and the definition of the
respective error functions. The error metric chosen in this work
does not directly assess the quality of the map. However, it is
reasonable to assume that the error in the map will be directly
related to the error of the trajectory.

The data sequences cover a wide range of challenges. The
“fr1” set of sequences contains, for example, fast motions,
motion blur, quickly changing lighting conditions and short-
term absence of salient visual features. Overall, however, the
scenario is office-sized and rich on features. Figure 6 shows a
voxel map our system created for the “fr1/desk” sequence. To
emphasize the robustness of our system, we further present
an evaluation on the four sequences of the “Robot SLAM”
category, where the Kinect was mounted on a Pioneer 3
robot. In addition to the above mentioned difficulties, these
sequences combine many properties that are representative of
highly challenging input. Recorded in an industrial hall, the
floor contains few distinctive visual features. Due to the size
of the hall and the comparatively short maximum range of
the Kinect, the sequences contain stretches with hardly any
visual features with depth measurements. Further, occurrence
of repeated instances of objects of the same kind can easily
lead to faulty associations. Some objects, like cables and
tripods, have a very thin structure, such that they are only
visible in the RGB image, yet do not occur in the depth
image, resulting in features with wrong depth information.
The repeatedly occurring poles have a spiral pattern that,
similar to a barber’s pole, suggest a vertical motion when
viewed from a different angle. The sequences also contain
short periods of sensor outage. A desired property of the
sequences, is the possibility to find loop closures. Note that,
even though the sequences contain wheel odometry and the
motion is roughly restricted to a plane, we make no use
of any additional information in the presented experiments.
Further information about the dataset can be found on the
benchmark’s web page1. Figure 2 shows a 2D projection of
the ground truth trajectory for the “fr2/pioneer_slam” sequence
and a corresponding estimate of our approach together with
the computed ATE root mean squared error.

Recently, RGB-D datasets captured at the MIT Stata center
have been made available2. Results obtained with our system
for an 229 m long sequence of this dataset are given in Table I.

B. Visual Features

One of the most influential choices for accuracy and runtime
performance is the used feature detector and descriptor. We
evaluated SIFT, SURF, ORB and a combination of the Shi-
Tomasi detector with SURF descriptors. We use the OpenCV
implementations in our implementation, except for SIFT where
we employ a GPU-based implementation [41]. The plots in
Figure 7 show a performance comparison on the “fr1” dataset.
The comparison results clearly show that each feature offers

1http://vision.in.tum.de/data/datasets/rgbd-dataset
2http://projects.csail.mit.edu/stata/

1

Sequence fr1 fr1 fr2 fr2 MIT Stata
desk room desk large no loop 2012-04-06 11:15

ATE RMSE 0.026 m 0.087 m 0.057 m 0.86 m 1.65 m
ATE Median 0.021 m 0.087 m 0.053 m 0.83 m 1.53 m
ATE Max 0.073 m 0.16 m 0.099 m 1.42 m 3.90 m
Frames 547 1324 2866 3256 19571
Processing 35.9 s 94.3 s 390.3 s 478.6 s 3881.7 s
FPS 15.2 Hz 14.0 Hz 7.34 Hz 6.80 Hz 5.04 Hz
Matching 2/2/5 2/2/5 4/4/10 8/8/20 8/8/20
Candidates (n/l/k) (n/l/k) (n/l/k) (n/l/k) (n/l/k)

TABLE I
DETAILED RESULTS OBTAINED WITH THE PRESENTED SYSTEM. EXCEPT

FOR “FR2/LARGE NO LOOP”, OUR SYSTEM ACHIEVES A BETTER
TRAJECTORY RECONSTRUCTION THAN THE RESPECTIVE BEST RESULTS

STATED IN [21]. OUR SYSTEM ALSO PERFORMS SATISFACTORY ON A
229 M LONG DATASET OF THE RECENT MIT STATA DATASET2 .
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Fig. 7. Evaluation of accuracy (left) and runtime (right) with respect to
feature type. The keypoint detectors and descriptors offer different tradeoffs
between accuracy and processing times. Timings do not include graph
optimization. The above results were computed on the nine sequences of
the “fr1” dataset with four different parameterizations for each sequence.
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Fig. 8. Evaluation of the accuracy of the proposed system on the sequences
of the “fr1” dataset using SIFT features. The plot has been generated from
288 evaluation runs using different parameter sets. The achieved frame rates
are similar for all sequences. The median frame rate for the above experiments
is 13.0 Hz, with a minimum of 9.1 Hz and a maximum of 16.4 Hz.

a tradeoff for a different use case. ORB and the combination
of Shi-Tomasi and SURF, may be good choices for robots
with limited computational resources or for applications that
require real-time performance (i.e. at the sensor rate of 30 Hz).
With an average error of about 15 cm on the “fr1” dataset, the
extraction speed of these options comes at the price of reduced
accuracy and robustness, which makes them applicable only in
benign scenarios or with additional sensing, e.g., odometry. In

http://projects.csail.mit.edu/stata/
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contrast, if a GPU is available, SIFT is clearly the best choice,
as it provides the highest accuracy (median RMSE of 0.04 m).

Another influential choice is the number of features ex-
tracted per Frame. For SIFT, increasing the number of features
extracted per frame improves the accuracy until about 600 to
700 features per frame. No noticable impact on accuracy was
obtained when using more features.

In our experiments we also evaluated the performance
impact of matching SIFT and SURF descriptors with the
Hellinger distance instead of the Euclidean distance, as re-
cently proposed in the context of object recognition [28].
In our experiments we could observe improved matching
of features led to improvement of up to 25.8% for some
datasets. However, for most sequences in the used dataset, the
improvement was not significant, as the error is dominated by
effects other than those from erroneous feature matching. As
the change in distance measure neither increases the runtime
nor the memory requirements noticeably, we suggest the
adoption of the Hellinger distance.

C. Graph Optimization
The graph optimization backend is a crucial part of our

SLAM system. It significantly reduces the drift in the tra-
jectory estimate. However, in some cases, graph optimization
may also distort the trajectory. Common causes for this
are wrong “loop closures” due to repeated structure in the
scenario, or highly erroneous transformation estimates due to
systematically wrong depth information, e.g., in case of thin
structures. Increased robustness can be achieved by detecting
transformations that are inconsistent to other estimates. We
do this by pruning edges after optimization based on the
Mahalanobis distance obtained from g2o, which measures
the discrepancy between the individual transformation esti-
mates before and after optimization. Most recently similar
approaches for discounting edges during optimization have
been published [42], [43].

Figure 10 shows an evaluation of edge pruning on the
“fr2/slam” sequence, which contains several of the mentioned
pitfalls. The boxes to the right show, that the accuracy is
drastically improved by pruning erroneous edges. As can be
seen from the green boxes, the best performance is achieved
using both rejection methods, the EMM in the SLAM frontend
as well as the pruning of edges in the SLAM backend.

Since the main computational cost of optimization lies in
solving a system of linear equations, we investigated the effect
of the used solver. g2o provides three solvers, two of which
are based on Cholesky decomposition (CHOLMOD, CSparse)
and one implements preconditioned conjugate gradient (PCG).
CHOLMOD and CSparse are less dependent of the initial
guess, than PCG, both in terms of accuracy and computation
time. In particular the runtime of PCG drastically decreases
given good initialization. In online operation this is usually
given by the previous optimization step, except when large
loop closures cause major changes in the shape of the graph.
Therefore, PCG is ideal for online operation. However, for
offline optimization the results from CHOLMOD and CSparse
are more reliable. For the presented experiments we optimize
the pose graph offline using CSparse.
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Fig. 9. Evaluation of the accuracy of the presented system on the sequences
of the “Robot SLAM” dataset (a). Evaluation of the proposed environment
measurement model (EMM) for the “Robot SLAM” scenarios of the RGB-D
benchmark for various quality thresholds. The value 0.0 on the horizontal
axis represents the case where no EMM has been used. The use of the EMM
substantially reduces the error (b).
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Fig. 10. In a challenging scenario (“Pioneer SLAM”), the application of the
EMM leads to greatly improved SLAM results. Pruning of graph edges based
on the statistical error also proves to be effective, particularly in combination
with the EMM. The plot has been generated from 240 runs and shows the
successive application of the named techniques. The runs represent various
parameterizations for the required EMM inlier fraction (as in Fig. 9b), feature
count (600-1200) and matching candidates (18-36).

D. Environment Measurement Model

In this section we describe the implementation of the
environment measurement model (EMM) proposed in Sec-
tion III-C and evaluate the increase in robustness.

Our system tries to estimate the transformation of cap-
tured RGB-D frames to a selection of previous frames. After
computing such a transformation, we compute the number
of inliers, outliers, and occluded points, by applying the
three sigma rule to (15). As stated, points projected within a
Mahalanobis distance of three are counted as inliers. Outliers
are classified as occluded if they are projected behind the
corresponding measurement.

The data association between projected point and beam is
not symmetric. As shown in Figure 4, a point projected outside
of the image area of the other frame has no association,
nevertheless in the reversed process it could occlude or be
occluded by a projected point. We therefore evaluate both, the
projection of the points in the new image to the depth image
of the older frame and vice versa. To reduce the requirements
on runtime and memory, we subsample the depth image. In



IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 1, JANUARY 2012 10

the presented experiments we construct our point cloud using
only every 8th row and column of the depth image, effectively
reducing the cloud to be stored to a resolution of 80 by 60.
This also decreases the statistical dependence between the
measurements. In our experiments, the average runtime for
the bidirectional EMM evaluation was 0.82 ms.

We compute the quality q of the point cloud alignment using
the number of inliers I and the sum of inliers and outliers I+O
as q = I

I+O . To avoid accepting transformations with nearly
no overlap we also require the inliers to be at least 25 % of
the observed points, i.e., inliers, outliers and occluded points.

To evaluate the effect of rejecting transformations with the
EMM, we first ran the system repeatedly with eight minimum
values for the quality q on the “fr1” dataset. To avoid reporting
results depending on a specific parameter setting, we show
statistics over many trials with varied parameters settings. A
q-threshold from 0.25 to 0.9 results in a minor improvement
over the baseline (without EMM). The number of edges of the
pose graph is only minimally reduced and the overall runtime
increases slightly due to the additional computations. For
thresholds above 0.95, the robustness decreases. While most
trials remain unaffected, the system performs substantially
worse in a number of trials.

Analogous to this finding, pruning edges based on the
Mahalanobis distance in the graph does not improve the results
for the “fr1” dataset. We conclude from these experiments, that
the error in the “fr1” dataset does not stem from individual
misalignments, for which alternative higher-precision align-
ments are available. In this case, the EMM-based rejection will
provide no substantial gain, as it can only filter the estimates.

In contrast, the same evaluation on the four sequences
of the “Robot SLAM” category results in greatly increased
accuracy and robustness. Due to the properties described in
the previous section, the rejection of inaccurate estimates and
wrong associations significantly reduces the error in the final
trajectory estimates. As apparent in Figure 9b the use of the
EMM decreases the average error for thresholds on the quality
measure up to 0.9.

V. CONCLUSION

In this paper, we presented a novel 3D SLAM system for
RGB-D sensors such as the Microsoft Kinect. Our approach
extracts visual keypoints from the color images and uses the
depth images to localize them in 3D. We use RANSAC to
estimate the transformations between associated keypoints and
optimize the pose graph using non-linear optimization. Finally,
we generate a volumetric 3D map of the environment that can
be used for robot localization, navigation, and path planning.

To improve the reliability of the transformation estimates,
we introduced a beam-based environment measurement model
that allows us to evaluate the quality of a frame-to-frame
estimate. By rejecting highly inaccurate estimates based on this
quality measure, our approach can robustly deal with highly
challenging scenarios. We performed a detailed experimental
evaluation of all components and parameters based on a
publicly available RGB-D benchmark, and characterized the
expected error in different types of scenes. We furthermore

provided detailed information about the properties of an
RGB-D SLAM system that are critical for its performance.

To allow other researchers to reproduce our results, to
improve on them, and to build upon them, we have fully
released all source code required to run and evaluate the
RGB-D SLAM system as open-source.
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